Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 028901    DOI: 10.1088/0256-307X/33/2/028901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection
Yi-Run Ruan**, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai
Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073
Cite this article:   
Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao et al  2016 Chin. Phys. Lett. 33 028901
Download: PDF(756KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ranking nodes by their spreading ability has been a fundamental issue related to many real applications, such as information and disease control. In the well-known coreness centrality measure, nodes' influence is ranked only by summing all neighbors' $k$-shell values while the effect of the topological connections among them on the nodes' spreading ability are ignored. In this work, we propose an improved coreness measure by decreasing the impact of densely local connections. Comparing the results from a series of susceptible-infected-recovered simulations on real networks, we show that our improved method can rank the nodes' spreading ability more accurately than other ranking measures such as $k$-shell, distance based method, mixed degree decomposition and coreness centrality method.
Received: 28 September 2015      Published: 26 February 2016
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  89.75.Kd (Patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/028901       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/028901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Run Ruan
Song-Yang Lao
Yan-Dong Xiao
Jun-De Wang
Liang Bai
[1] Anderson R M et al 1991 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford university press)
[2] Hou L L et al 2015 Phys. Lett. A 379 1321
[3] Zhou T et al 2006 Phys. Rev. E 74 056109
[4] Hu Y Q et al 2014 Phys. Rev. X 4 021031
[5] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[6] Lü L Y et al 2011 New J. Phys. 13 123005
[7] Zhang Y C et al 2011 Acta Phys. Sin. 60 050501 (in Chinese)
[8] Zhou T et al 2006 Prog. Nat. Sci. 16 452
[9] Pastor-Satorras R et al 2015 Rev. Mod. Phys. 87 925
[10] Pei S and Makse H A 2013 J. Stat. Mech. 2013 P12002
[11] Borge-Holthoefer J and Moreno Y 2012 Phys. Rev. E 85 026116
[12] Borge-Holthoefer J et al 2012 Phys. Rev. E 85 066123
[13] Liu J G et al 2013 Acta Phys. Sin. 62 178901 (in Chinese)
[14] Freeman L C 1978 Soc. Networks 1 215
[15] Sabidussi G 1966 Psychometrika 31 581
[16] Katz L 1953 Psychometrika 18 39
[17] Chen D B et al 2012 Physica A 391 1777
[18] Brin S and Page L 1998 Comput. Networks ISDN Syst. 30 107
[19] Radicchi F et al 2009 Phys. Rev. E 80 056103
[20] Lü L Y et al 2011 PLoS One 6 e21202
[21] Li Q et al 2014 Physica A 404 47
[22] Klemm K et al 2012 Sci. Rep. 2 292
[23] Bauer F and Lizier J T 2012 Europhys. Lett. 99 68007
[24] Li P et al 2012 Chin. Phys. Lett. 29 048903
[25] Lin J H et al 2015 arXiv:1504.06672
[26] Kitsak M et al 2010 Nat. Phys. 6 888
[27] Liu Y et al 2015 Sci. Rep. 5 9602
[28] Zeng A and Zhang C J 2013 Phys. Lett. A 377 1031
[29] Liu J G et al 2013 Physica A 392 4154
[30] Bae J and Kim S 2014 Physica A 395 549
[31] Eguiluz V M and Klemm K 2002 Phys. Rev. Lett. 89 108701
[32] Petermann T and Rios P 2004 Phys. Rev. E 69 066116
[33] Zhou T et al 2005 Phys. Rev. E 71 046141
[34] Chen D B et al 2013 PLoS One 8 e77455
[35] Burt R S 2009 Structural Holes: the Social Structure of Competition (London: Harvard University Press) p 53
[36] Burt R S et al 2013 Annu. Rev. Psychol. 64 527
[37] Lusseau D et al 2003 Behav. Ecol. Sociobiol. 54 396
[38] Newman M E J 2006 Phys. Rev. E 74 036104
[39] Duch J and Arenas A 2005 Phys. Rev. E 72 027104
[40] Jeong H et al 2001 Nature 411 41
[41] Rual J F et al 2005 Nature 437 1173
[42] Xie N 2006 Master Thesis (Bristol: University of Bristol)
[43] Watts D J and Strogatz S H 1998 Nature 393 440
[44] Boguna M et al 2004 Phys. Rev. E 70 056122
[45] Dorogovtsev S N et al 2006 Phys. Rev. Lett. 96 040601
[46] Newman M E J 2002 Phys. Rev. E 66 016128
[47] Albert R et al 2000 Nature 406 378
[48] Castellano C and Pastor-Satorras R 2010 Phys. Rev. Lett. 105 218701
[49] Kendall M G 1945 Biometrika 33 239
[50] Knight W R 1966 J. Am. Stat. Assoc. 61 436
[51] Garas A et al 2012 New J. Phys. 14 083030
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 028901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 028901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 028901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 028901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 028901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 028901
[7] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 028901
[8] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 028901
[9] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 028901
[10] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 028901
[11] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 028901
[12] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 028901
[13] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 028901
[14] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 028901
[15] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 028901
Viewed
Full text


Abstract