CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Analyzing Bandwidth on the Microwave Absorber by the Interface Reflection Model |
Liang Qiao1**, Tao Wang1, Zhong-Lei Mei2, Xi-Ling Li1, Wen-Bo Sui1, Li-Yun Tang1, Fa-Shen Li1 |
1Institute of Applied Magnetics, Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 2School of Information Science and Engineering, Lanzhou University, Lanzhou 730000
|
|
Cite this article: |
Liang Qiao, Tao Wang, Zhong-Lei Mei et al 2016 Chin. Phys. Lett. 33 027502 |
|
|
Abstract Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength ($\lambda/4$) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most importantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the $\lambda/4$ cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research.
|
|
Received: 25 July 2015
Published: 26 February 2016
|
|
PACS: |
75.50.Bb
|
(Fe and its alloys)
|
|
72.30.+q
|
(High-frequency effects; plasma effects)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
|
|
|
[1] Wei J Q, Zhang Z Q, Wang B C, Wang T and Li F S 2010 J. Appl. Phys. 108 123908 [2] Shirakata Y, Hidaka N, Ishitsuka M, Teramoto A and Ohmi T 2008 IEEE Trans. Magn. 44 2100 [3] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120 [4] Yang R B and Liang W F 2013 J. Appl. Phys. 113 17A315 [5] Zhang W Q, Zhang D Y and Cai J 2013 J. Magn. Magn. Mater. 332 15 [6] Qiao L, Han R, Wang Tao, Tang Liyun and Li F S 2015 J. Magn. Magn. Mater. 375 100 [7] Yang Y and Ding J 2012 J. Alloys Compd. 528 58 [8] Wang T, Han R, Tan G G, Wei J Q, Qiao L and Li F S 2012 J. Appl. Phys. 112 104903 [9] Qiao L, Li Xiling, Wang Tao, Tang Liyun and Li F S 2015 J. Magn. Magn. Mater. 393 347 [10] Huang H, Zhang X F, Lv B, Xue F H, Shah A, Su L, Yan J G, Yao M and Dong X L 2013 J. Appl. Phys. 113 084312 [11] Li Z W, Lin G Q and Kong L B 2008 IEEE Trans. Magn. 44 2255 [12] Wang B C, Wei J Q, Yang Y, Wang T and Li F S 2011 J. Magn. Magn. Mater. 323 1101 [13] Han R, Qiao L, Wang T and Li F S 2011 J. Alloys Compd. 509 2734 [14] Liu J R, Itoh M and Machida K 2003 Appl. Phys. Lett. 83 4017 [15] Singh P, Babbar V K, Razdan A, Puri R K and Goel T C 2000 J. Appl. Phys. 87 4362 [16] Qin F and Brosseau C 2012 J. Appl. Phys. 111 061301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|