Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 027301    DOI: 10.1088/0256-307X/33/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Si $\delta$-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells
Shaffa Almansour, Hassen Dakhlaoui**, Emane Algrafy
Department of Physics, College of Science for Girls, University of Dammam, Dammam, Saudi Arabia
Cite this article:   
Shaffa Almansour, Hassen Dakhlaoui, Emane Algrafy 2016 Chin. Phys. Lett. 33 027301
Download: PDF(726KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si $\delta$-doped InAlN/GaN single quantum well by solving numerically the coupled equations Schr?dinger–Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.
Received: 11 November 2015      Published: 26 February 2016
PACS:  73.21.Fg (Quantum wells)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/027301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shaffa Almansour
Hassen Dakhlaoui
Emane Algrafy
[1] Lei S Y et al 2008 Chin. Phys. Lett. 25 3385
[2] Xie Z L et al 2008 Chin. Phys. Lett. 25 2185
[3] Gu Y et al 2007 Chin. Phys. Lett. 24 3237
[4] Kristina D et al 2007 Appl. Phys. Lett. 91 141104
[5] Wen X X et al 2012 Chin. Phys. Lett. 29 097304
[6] Enrico B et al 2009 J. Appl. Phys. 105 113103
[7] M A Remnev et al 2010 Semiconductors 44 1034
[8] Wei Z et al 2011 Appl. Phys. Lett. 99 162105
[9] S H Ha et al 2011 Physica B 406 3640
[10] Daniel H et al 2002 Appl. Phys. Lett. 80 2991
[11] Baumann. E et al 2005 Appl. Phys. Lett. 86 032110
[12] Heber J D et al 2002 Appl. Phys. Lett. 81 1237
[13] Daniel H et al 2006 Appl. Phys. Lett. 88 121112
[14] Jan K et al 2012 Jpn. J. Appl. Phys. 51 054102
[15] El-Hajj H et al 2008 Diamond Relat. Mater. 17 1259
[16] Su M L et al 2010 Appl. Phys. Lett. 97 023507
[17] Ozturk E 2010 Chin. Phys. Lett. 27 077302
[18] Gaggero-Sager L M and Perez-Alvarez R 1995 J. Appl. Phys. 78 4566
[19] Rodr?guez V I et al 2003 Surf. Sci. 537 75
[20] Schubert E F et al 1986 IEEE Trans. Electron Devices 33 625
[21] Ploog K et al 1988 Appl. Phys. A 45 233
[22] Chakhnakia Z D et al 2004 Proc. SPIE 5401 354
[23] Balmer R S et al 2009 J. Phys.: Condens. Matter 21 364221
[24] Oubram O and Gaggero-Sager L M 2008 Prog. Electromagn. Res. 2 81
[25] Lin Y M et al 2003 IEEE Trans. Electron Devices 24 69
[26] Kandaswamy P K et al 2010 Appl. Phys. Lett. 96 141903
[27] Ungan F 2011 J. Lumin. 131 2237
[28] Ozturk E 2013 Opt. Commun. 294 361
[29] Edmunds C et al 2012 Appl. Phys. Lett. 101 102104
[30] Dakhlaoui H et al 2015 Superlattices Microstruct. 77 196
[31] Dakhlaoui H 2013 Chin. Phys. Lett. 30 077304
[32] Dakhlaoui H 2014 Chin. Phys. B 23 097304
[33] Ungan F et al 2011 Solid State Commun. 151 1415
[34] Kuzmik J 2002 Semicond. Sci. Technol. 17 540
[35] Jain S C et al 2000 J. Appl. Phys. 87 965
[36] Ambacher O et al 2000 J. Appl. Phys. 87 334
[37] Morkoc H et al 1999 Solid-State Electron. 43 1909
[38] Dakhlaoui H 2015 J. Appl. Phys. 117 135705
[39] Wong K M and Allsopp D W 2009 Semicond. Sci. Technol. 24 045018
[40] Imene S et al 2006 Solid State Commun. 140 308
[41] Osvald J 2004 Physica E 23 147
[42] Ahn D and Chuang S L 1987 IEEE J. Quantum Electron. 23 2196
[43] Baghramyan H M et al 2014 J. Lumin. 145 676
[44] Yesilgul U et al 2014 J. Lumin. 145 379
[45] Rodríguez-Magdaleno K A et al 2014 J. Lumin. 147 77
[46] Yimin H and Chenhsin L 1995 J. Appl. Phys. 77 3433
[47] Kuhn K J et al 1991 J. Appl. Phys. 70 5010
Related articles from Frontiers Journals
[1] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 027301
[2] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 027301
[3] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 027301
[4] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 027301
[5] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 027301
[6] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 027301
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 027301
[8] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 027301
[9] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 027301
[10] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 027301
[11] GAO Han-Chao, YIN Zhi-Jun. Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure[J]. Chin. Phys. Lett., 2015, 32(06): 027301
[12] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 027301
[13] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 027301
[14] WANG Gang, YE Hui-Qi, SHI Zhen-Wu, WANG Wen-Xin, MARIE Xavier, BALOCCHI Andrea, AMAND Thierry, LIU Bao-Li. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(9): 027301
[15] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 027301
Viewed
Full text


Abstract