Chin. Phys. Lett.  2016, Vol. 33 Issue (02): 026302    DOI: 10.1088/0256-307X/33/2/026302
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
First-Principles Study of Properties of Strained PbTiO$_{3}$/KTaO$_{3}$ Superlattice
Zhen-Ye Zhu**, Si-Qi Wang, Yan-Ming Fu
Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055
Cite this article:   
Zhen-Ye Zhu, Si-Qi Wang, Yan-Ming Fu 2016 Chin. Phys. Lett. 33 026302
Download: PDF(752KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The impacts of strain and polar discontinuities on the performance of superlattices have attracted widespread attention. Using first-principles calculation, we study the polarization and piezoelectricity of PbTiO$_{3}$/KTaO$_{3}$ (PTO/KTO) superlattices with strain and polar discontinuities. The strain caused by lattice mismatch between the superlattice and the substrate induces lattice distortion, the displacement of each atom and dynamical charge transfer between the Ti atom or Ta atom and the O atoms in the PTO/KTO superlattice. With more compressive or less tensile strain, the polarization value increases linearly, piezoelectric tensor $e_{31}$ ($e_{32}$) increases while $e_{33}$ and $e_{25}$ ($e_{16}$) increase negatively. Polarity discontinuity caused by the interfacial charge will produce large irreversible polarization. Proved by ${\it \Gamma}$-point phonons of PTO/KTO superlattices of different strain values, the polar discontinuity and the piezoelectric properties are just weakly dependent on temperature as found in PTO/KTO superlattices.
Received: 01 September 2015      Published: 26 February 2016
PACS:  63.20.dk (First-principles theory)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/2/026302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I02/026302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhen-Ye Zhu
Si-Qi Wang
Yan-Ming Fu
[1] Bungaro C and Rabe K M 2004 Phys. Rev. B 69 184101
[2] Duan Y F, Qin L X, Tang G et al 2010 Phys. Lett. A 374 2075
[3] Duan Y F, Tang G, Chen C Q et al 2012 Phys. Rev. B 85 054108
[4] Hong L, Li Y L, Wu P P et al 2013 J. Appl. Phys. 114 144103
[5] Lee H N, Christen H M and Chisholm M F 2005 Nature 434 792
[6] Dawber M, Lichtensteiger C, Cantoni M et al 2005 Phys. Rev. Lett. 95 177601
[7] Zhu Z Y, Wang B, Wang H et al 2007 Chin. Phys. 16 6
[8] Aguado-Puente P and Junquera J 2012 Phys. Rev. B 85 184105
[9] Lisenkov S and Bellaiche L 2007 Phys. Rev. B 76 020102
[10] Neaton J B and Rabe K M 2003 Appl. Phys. Lett. 82 1586
[11] Pentcheva R and Pickett W E 2010 J. Phys.: Condens. Matter 22 043001
[12] Wu T B and Hung C J 2005 Appl. Phys. Lett. 86 112905
[13] Hung C J, Chueh Y L, Wu T B et al 2005 J. Appl. Phys. 97 034105
[14] Das H, Waghmare U V and Saha-Dasgupta T 2011 Appl. Phys. 109 066107
[15] Das H, Spaldin N A, Waghmare U V et al 2010 Phys. Rev. B 81 235112
[16] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[17] Lee H N, Christen H M, Chisholm M F et al 2005 Nature 433 395
[18] Cooper V R, Johnston K and Rabe K M 2007 Phys. Rev. B 76 020103
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[20] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[21] Bl?chl P E 1990 Phys. Rev. B 41 5414
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[26] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651
[27] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
[28] Kuo C P, Vong S K, Cohen R M et al 1985 J. Appl. Phys. 57 5428
[29] Cooper V R and Rabe K M 2009 Phys. Rev. B 79 180101
[30] Wu Z G and Krakauer H 2003 Phys. Rev. B 68 014112
[31] Vanderbilt D and King-Smith R D 1993 Phys. Rev. B 48 4442
Related articles from Frontiers Journals
[1] Kun Luo, Baozhong Li, Lei Sun, Yingju Wu, Yanfeng Ge, Bing Liu, Julong He, Bo Xu, Zhisheng Zhao, and Yongjun Tian. Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure[J]. Chin. Phys. Lett., 2022, 39(3): 026302
[2] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 026302
[3] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 026302
[4] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 026302
[5] Yulou Ouyang, Zhongwei Zhang, Cuiqian Yu, Jia He, Gang Yan, and Jie Chen. Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties[J]. Chin. Phys. Lett., 2020, 37(12): 026302
[6] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 026302
[7] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 026302
[8] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 026302
[9] Pei GONG, Ya-Lin LI, Ya-Hui JIA, Xiao-Yong FANG. First Principle Study on Optical Properties of Tri-Group Doped (6,6) SiC Nanotubes[J]. Chin. Phys. Lett., 2018, 35(11): 026302
[10] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 026302
[11] Yu-Ping Cang, Shuai-Bin Lian, Hui-Ming Yang, Dong Chen. Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic $M_{3}$N$_{4}$ ($M$=C, Si, Sn) Polymorphs via First-Principles Calculations[J]. Chin. Phys. Lett., 2016, 33(06): 026302
[12] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 026302
[13] ZHANG Jian, LI Hai-Tao, GUO Jun-Hong, HU Fang-Ren. Raman Scattering Modification Induced by Structural Change in Alumina Polymorphs[J]. Chin. Phys. Lett., 2015, 32(12): 026302
[14] FENG Shi-Quan, LI Jun-Yu, CHENG Xin-Lu. The Structural, Dielectric, Lattice Dynamical and Thermodynamic Properties of Zinc-Blende CdX (X= S, Se, Te) from First-Principles Analysis[J]. Chin. Phys. Lett., 2015, 32(03): 026302
[15] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 026302
Viewed
Full text


Abstract