ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Two-Photon Transitions of $^{85}$Rb 5$D_{5/2}$ State by Using an Optical Frequency Comb and a Continuous-Wave Laser |
Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang, Li-Rong Wang**, Lian-Tuan Xiao, Suo-Tang Jia |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
|
|
Cite this article: |
Shu-Kai Cao, Peng-Rui Fan, Yi-Chi Zhang et al 2016 Chin. Phys. Lett. 33 023201 |
|
|
Abstract A high-resolution two-photon spectrum of 5$S_{1/2}\to5P_{3/2}\to5D_{5/2}$ transitions in a thermal $^{85}$Rb vapor cell is presented by using an optical frequency comb and a cw laser. The fluorescence of 6$P_{3/2}\to5S_{1/2}$ spontaneous emission is detected when the cw laser frequency is scanned from the 5$S_{1/2}$ ground state to 5$P_{3/2}$ hyperfine levels and the optical frequency comb repetition rate is fixed. The hyperfine splittings ($F_{\rm f}=2$–5) of the 5$D_{5/2}$ excited state are well resolved. The dependences of fluorescence intensities on the cw laser intensity and temperature of $^{85}$Rb vapor cell are studied, respectively. The experimental results are in good agreement with the theoretical analyses.
|
|
Received: 19 October 2015
Published: 26 February 2016
|
|
PACS: |
32.10.Fn
|
(Fine and hyperfine structure)
|
|
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
|
34.10.+x
|
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
|
|
|
|
|
[1] Gerginov V, Calkins K, Tanner C E, McFerran J J, Diddams S, Bartels A and Hollberg L 2006 Phys. Rev. A 73 032504 [2] Mohr P J, Taylor B N and Newell D B 2008 Rev. Mod. Phys. 80 633 [3] Leggett A J 2001 Rev. Mod. Phys. 73 307 [4] Wynards R and Weyers S 2005 Metrologia 42 S64 [5] Budker D and Romalis M 2007 Nat. Phys. 3 227 [6] Fischer M, Kolachevsky N, Zimmermann M, Holzwarth R et al 2004 Phys. Rev. Lett. 92 230802 [7] Guéna J, Lintz M and Bouchiat M A 2005 J. Opt. Soc. Am. B 22 21 [8] Stalnaker J E, Mbele V, Gerginov V, M Fortier T, Diddams S A, Hollberg L and Tanner C E 2010 Phys. Rev. A 81 043840 [9] Aumiler D, Ban T, Skenderovi? H and Pichler G 2005 Phys. Rev. Lett. 95 233001 [10] Snadden M J, Bell A S, Riis E and Ferguson A I 1996 Opt. Commun. 125 70 [11] Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201 [12] Bernard J E, Madej A A, Siemsen K J, Marmet L, Latrasse C, Touahri D, Poulin M, Allard M and Têtu M 2000 Opt. Commun. 173 357 [13] Jin L, Zhang Y C, Xiang S S, Wang L R, Ma J, Zhao Y T, Xiao L T and Jia S T 2013 Chin. Phys. Lett. 30 103201 [14] Barmes I, Witte S and Eikema K S E 2013 Phys. Rev. Lett. 111 023007 [15] Stalnaker J E, Chen S L, Rowan M E, Nguyen K, Pradhananga T, Palm C A and Jackson K D F 2012 Phys. Rev. A 86 033832 [16] Olson A J, Carlson E J and Mayer S K 2006 Am. J. Phys. 74 218 [17] Ban T, Aumiler D, Skenderovi? H and Pichler G 2006 Phys. Rev. A 73 043407 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|