CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Interaction of Pair Particles Mediated by Signal Molecules |
Jiang-Xing Chen1,2**, Qiang Zheng1, Chun-Yun Huang1, Jiang-Rong Xu1**, He-Ping Ying3 |
1Department of Physics, Hangzhou Dianzi University, Hangzhou 310018
2Department of Physics, Nanjing University, Nanjing 210093
3Department of Physics, Zhejiang University, Hangzhou 310027 |
|
Cite this article: |
Jiang-Xing Chen, Qiang Zheng, Chun-Yun Huang et al 2016 Chin. Phys. Lett. 33 018701 |
|
|
Abstract A mesoscopic model is set up to study the predator–prey-like phenomenon between two chemically active objects. A target sphere (T) secretes chemical signal molecules that are detected and traced by a hunter sphere (H). The distribution of signal molecules diffusing around the target is simulated and analyzed. The chemotactic behavior of the hunter along the gradient of signal molecules results in the capture of the target. The dependences of capture time $t_{\rm c}$ on different conditions are focused on. It is found that the values of capture time rely on their initial separation $d$ as a power law $t_{\rm c}\propto d^{\alpha}$. The exponent $\alpha$ depends on decay rate of signal molecules. The capture time increases with the decay rate. The increases of target and hunter size both lead to the decrease of the capture time, which is also shown by the power law behavior. The detailed chemotaxis process is investigated.
|
|
Received: 23 August 2015
Published: 29 January 2016
|
|
PACS: |
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
87.15.H-
|
(Dynamics of biomolecules)
|
|
|
|
|
[1] Drocco J A, Reighhardt C J Olson and Reichhardt C 2012 Phys. Rev. E 85 056102
[2] Segerer F J, Thüroff F, Alberola A P, Frey E and Rädler J O 2015 Phys. Rev. Lett. 114 228102
[3] Cavagna A, Giardina I, Grigera T S, Jelic A, Levine D, Ramaswamy S and Viale M 2015 Phys. Rev. Lett. 114 218101
[4] Berg H C 2004 E. coli in Motion (New York: Springer-Verlag)
[5] Wu J, Balasubramanian S, Kangan D, Manesh K M, Campuzano S and Wang J 2010 Nat. Commun. 1 36
[6] Wang W, Duan W T, Sen A and Mallouk T E 2013 Proc. Natl. Acad. Sci. USA 110 17744
[7] Andrew N and Insall R H 2007 Nat. Cell Biol. 9 193
[8] Ibele M, Mallouk T E and Sen A 2009 Angew. Chem. Int. Ed. 48 3308
[9] Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C and Bocquet L 2012 Phys. Rev. Lett. 108 268303
[10] Soto R and Golestanian R 2014 Phys. Rev. Lett. 112 068301
[11] Colberg P H, Reigh S Y, Robertson B and Kapral R 2014 Acc. Chem. Res. 47 3504
[12] Gao W, Pei A, Feng X M, Hennessy C and Wang J 2013 J. Am. Chem. Soc. 135 998
[13] Orr F W 1994 Adv. Mol. Cell Biol. 9 153
[14] Koizumi K, Hojo S, Akashi T, Yasumoto K and Saiki I 2007 Cancer Sci. 98 1652
[15] Kapral R 2008 Adv. Chem. Phys. 140 89
[16] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1
[17] Chen J X, Zhu J X, Zhao Y H, Sun W G, Xu J R and Ying H P 2014 Commun. Nonlinear. Sci. Numer. Simul. 19 2505
[18] Brereton M G and Rusli A 1976 Polymer 17 395
[19] Szabo A, Schulten K and Schulten Z 1980 J. Chem. Phys. 72 4350
[20] Friedman B and Oshaughessy B 1989 Phys. Rev. A 40 5950
[21] Lapidus L J, Steinbach P J, Eaton W A, Snabo A and Hofrichter 2002 J. Phys. Chem. B 106 11628
[22] Redpath A E C and Winnik M A 1980 J. Am. Chem. Soc. 102 6869
[23] Toan N M, Morrison G, Hyeon C and Thirumalai D 2008 J. Phys. Chem. B 112 6094
[24] Sarkar D, Thakur S, Tao Y G and Kapral R 2014 Soft Matter 10 9577
[25] Chen J X and Kapral R 2011 J. Chem. Phys. 134 044503 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|