FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Simulation of High-Transmission Chiral Metamaterial with Impedance Matching to a Vacuum |
Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang**, Zhong-Xiang Zhou |
School of Science, Harbin Institute of Technology, Harbin 150001
|
|
Cite this article: |
Xiu-Li Jia, Qing-Xin Meng, Xiao-Ou Wang et al 2016 Chin. Phys. Lett. 33 014207 |
|
|
Abstract For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also calculate the figure of merit, which is defined as the ratio of the real and the imaginary refraction components, and compare it with those of fishnet metamaterials. The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum. Also, we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies. Therefore, this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands.
|
|
Received: 07 June 2015
Published: 29 January 2016
|
|
PACS: |
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
76.70.Fz
|
(Double nuclear magnetic resonance (DNMR), dynamical nuclear polarization)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
|
|
|
[1] Linden S, Enkrich C, Wegener M, Zhou J, Koschny T and Soukoulis C M 2004 Science 306 1351 [2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [3] Bin G 2013 Chin. Phys. Lett. 30 105201 [4] Liu M H, Hu X W, Jiang Z H, Lu X P, Gu C L and Pan Y 2001 Chin. Phys. Lett. 18 1225 [5] Chen Y Y, Song Y, Li Z H and He A Z 2011 Chin. Phys. B 20 034201 [6] Zhou J, Dong J, Wang B, Koschny T and Soukoulis C M 2009 Phys. Rev. B 79 121104 [7] Pendry J B 2004 Science 306 1353 [8] Song K, Zhao X P, Fu Q H, Liu Y H and Zhu W R 2012 J. Electromagn. Waves Appl. 26 1967 [9] Liu Y, Cheng Y Z and Cheng Z Z 2014 Optik 125 1316 [10] Wu J F, Ng B H, Turaga S P, Breese M B H, Maier S A, Hong M H, Bettiol A A and Moser H O 2013 Appl. Phys. Lett. 103 141106 [11] Panpradit W, Sonsilphong A, Soemphol C and Wongkasem N 2012 J. Opt. 14 075101 [12] Plum E, Fedotov V A, Schwanecke A S, Zheludev N I and Chen Y 2007 Appl. Phys. Lett. 90 223113 [13] Liu N and Giessen H 2008 Opt. Express 16 21233 [14] Giloann M and Astilean S 2014 Opt. Commun. 315 122 [15] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 1899 Science 10 977 [16] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [17] Hu J, Yan C S and Lin Q C 2006 J. Zhejiang Univ. Sci. A 7 89 [18] Szabo Z, Park G H, Hedge R and Li E P 2010 IEEE Trans. Microwave Theory Tech. 58 2646 [19] Boltasseva A and Atwater H A 2011 Science 331 290 [20] Jak?i? Z, Vukovi? S M and Buha J 2011 J. Nanophoton. 5 051818 [21] Tanaskovi? S D, Obradov M, Jak?i? O and Jak?i? Z 2014 Phys. Scr. T162 014048 [22] Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J P and Aspnes D E 2009 Opt. Lett. 34 2867 [23] Cheng Y Z, Nie Y, Cheng Z Z, Wang X and Gong R Z 2013 J. Electromagnetic Waves Appl. 27 1068 [24] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 Phys. Rev. Lett. 95 137404 [25] Smith D R, Schultz S, Marko? P and Soukoulis C M 2002 Phys. Rev. B 65 195104 [26] Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 4650 [27] Costa F, Genovesi S, Monorchio A and Manara G 2013 IEEE Trans. Antennas Propag. 61 1201 [28] Shen J Q 2014 J. Phys. Soc. Jpn. 83 124401 [29] Song Z Y and Xu H 2014 Europhys. Lett. 107 57007 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|