Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 046801    DOI: 10.1088/0256-307X/32/4/046801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Controllable Nucleation of Nanobubbles at a Modified Graphene Surface
MA Wang-Guo1,2, ZHANG Meng2, NIE Xue-Chuan2,4, WANG Chun-Lei2, FANG Hai-Ping2, HE Meng-Dong1**, ZHANG Li-Juan2,3**
1Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004
2Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
3Shanghai Synchrotron Radiation Facility, Shanghai 201204
4University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
MA Wang-Guo, ZHANG Meng, NIE Xue-Chuan et al  2015 Chin. Phys. Lett. 32 046801
Download: PDF(1137KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The properties of nanoscale gas bubbles at the solid/water interface have been investigated for more than 20 years. However, the stability of nanobubbles remains far from being understood. How to control the formation of nanobubbles is the key issue for understanding their long lifetime. In this work, using molecular dynamics simulations we modify the substrate (graphene) with charge dipoles in which the local properties of the surface could be changed. Nanobubbles could be stabilized on the local hydrophobic area and modified area with the hydrophilic boundary where gas nuclei are deposited beforehand. Those results provide two methods to control the nucleation of gas nanobubbles and fix them on a target area.
Received: 22 December 2014      Published: 30 April 2015
PACS:  68.08.-p (Liquid-solid interfaces)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  02.70.Bf (Finite-difference methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/046801       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/046801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Wang-Guo
ZHANG Meng
NIE Xue-Chuan
WANG Chun-Lei
FANG Hai-Ping
HE Meng-Dong
ZHANG Li-Juan
[1] Parker J L, Claesson P M and Attard P 1994 J. Phys. Chem. 98 8468
[2] Lou S T and Hu J 2000 J. Vac. Sci. Technol. B 18 2573
[3] Ishida N 2000 Langmuir 16 6377
[4] Ohl C D and Ikink R 2003 Phys. Rev. Lett. 90 214502
[5] Zhang X H 2008 Phys. Chem. Chem. Phys. 10 6842
[6] Mezger Met 2006 Proc. Natl. Acad. Sci. USA 103 18401
[7] Zhang L J, Hu J and Fang H P 2006 Langmuir 22 8109
[8] Yang S J 2009 Langmuir 25 1466
[9] Zhang X H 2004 Langmuir 20 3813
[10] Zhang X H 2006 Langmuir 22 9238
[11] Zhang L J 2013 J. Synchrotron Rad. 20 413
[12] Zhao B Y, Zhang L J and Hu J 2013 Soft Matter 9 8837
[13] Seddon J R, Zandvliet H J and Lohse D 2011 Phys. Rev. Lett. 107 116101
[14] Ducker W A 2009 Langmuir 25 8907
[15] Zhang X H, Khan A and Ducker W A 2007 Phys. Rev. Lett. 98 136101
[16] Poynor A 2006 Phys. Rev. Lett. 97 266101
[17] Wang Y L and B Bhushan 2010 Soft Matter 6 29
[18] Zhang M, Zuo G H, Chen J X, Gao Y and Fang H P 2013 Sci. Rep. 3 1660
[19] Liu G M and Craig V S J 2009 ACS Appl. Mater. Interfaces 1 481
[20] Ljunggren S, Eriksson J C and Kralchevsky P A 1997 J. Colloid Interface Sci. 191 424
[21] Brenner M P and Lohse D 2008 Phys. Rev. Lett. 101 214505
[22] Takahashi M, Chiba K and Li P 2007 J. Phys. Chem. B 111 11443
[23] Zhang L J, Fang H P ang Hu J 2008 Sci. Chin. G 51 219
[24] Zhang X H 2014 Phys. Rev. Lett. 112 144503
[25] Jin F 2008 Soft Matter 4 968
[26] Agrawal A 2005 Nano Lett. 5 1751
[27] Vinogradova O I 1999 Int. J. Miner. Process. 56 31
[28] Ruckenstein E and Rajora P 1983 J. Colloid Interface Sci. 96 488
[29] Granick S, Zhu Y X and Lee H 2003 Nat. Mater. 2 221
[30] Cottin-Bizonne C 2005 Phys. Rev. Lett. 94 056102
[31] Wang C L and Fang H P 2009 Phys. Rev. Lett. 103 137801
[32] Zhao W H 2014 Acc. Chem. Res. 47 2505
[33] Koishi T 2004 Phys. Rev. Lett. 93 185701
[34] Weijs J H, Snoeijer J H and Lohse D 2012 Phys. Rev. Lett. 108 104501
[35] Liu Y and Zhang X H 2013 J. Chem. Phys. 138 014706
[36] Wang C L and Fang H P 2008 Chin. Phys. B 17 2646
[37] Wang C L and Fang H P 2012 Sci. Rep. 2 358
[38] ten Wolde P R and Frenkel D 1998 J. Chem. Phys. 109 9901
[39] Stillinger F H 1963 J. Chem. Phys. 38 1486
[40] Hess B 2008 J. Chem. Theory Comput. 4 435
[41] Essmann U 1995 J. Chem. Phys. 103 8577
[42] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[43] Yang J W 2003 J. Phys. Chem. B 107 6139
[44] Ryan W L and Hemmingsen E A 1998 J. Colloid Interface Sci. 197 101
[45] Davies T J, Hyde M E and Compton R G 2005 Angew. Chem. Int. Ed. 44 5121
[46] Bunkin N F 1997 Langmuir 13 3024
Related articles from Frontiers Journals
[1] Haijun Yang, Yizhou Yang, Shiqi Sheng, Binghai Wen, Nan Sheng, Xing Liu, Rongzheng Wan, Long Yan, Zhengchi Hou, Xiaoling Lei, Guosheng Shi, Haiping Fang. Controlling the Coffee Ring Effect on Graphene and Polymer by Cations[J]. Chin. Phys. Lett., 2020, 37(2): 046801
[2] Shun-yu Zhou, Yan-xia Ye, Kun Ding, De-sheng Jiang, Xiu-ming Dou, Bao-quan Sun. Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$[J]. Chin. Phys. Lett., 2018, 35(6): 046801
[3] Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 046801
[4] WANG Le-Feng, LIU Lu, XU Hui-Chao, RONG Wei-Bin, SUN Li-Ning. Forces Acting on Submillimeter Spheres at the Air–Water Interface[J]. Chin. Phys. Lett., 2015, 32(11): 046801
[5] YU Yang, WU Qun, WANG Xue-Wei, YANG Xiao-Bin. Wetting Behavior between Droplets and Dust[J]. Chin. Phys. Lett., 2012, 29(2): 046801
[6] MEI Mao-Fei, YU Bo-Ming, LUO Liang, CAI Jian-Chao. A Model for the Contact Angle of Liquid Droplets on Rough Surfaces[J]. Chin. Phys. Lett., 2010, 27(7): 046801
[7] WANG Le-Feng, RONG Wei-Bin, SUN Li-Ning, CHEN Li-Guo, SHAO Bing. Capillary Forces between Submillimeter Spheres and Flat Surfaces at Constant Liquid Volumes[J]. Chin. Phys. Lett., 2009, 26(12): 046801
[8] SUN Li-Ning, WANG Le-Feng, RONG Wei-Bin. Capillary Interactions between a Probe Tip and a Nanoparticle[J]. Chin. Phys. Lett., 2008, 25(5): 046801
[9] WU Di, WANG Yi-Zhen, ZHANG Jin-Xiu. Non-Contact to Contact Transition: Direct Measurements of Interaction Forces between a Solid Probe and a Planar Air--Water Interface[J]. Chin. Phys. Lett., 2007, 24(10): 046801
[10] LI Zhao-Xia, ZHANG Li-Juan, YI Hou-Hui, FANG Hai-Ping. Theoretical Study on the Capillary Force between an Atomic Force Microscope Tip and a Nanoparticle[J]. Chin. Phys. Lett., 2007, 24(8): 046801
[11] LI Ding, DI Qin-Feng, LI Jing-Yuan, QIAN Yue-Hong, FANG Hai-Ping. Large Slip Length over a Nanopatterned Surface[J]. Chin. Phys. Lett., 2007, 24(4): 046801
[12] GUO Hong-Kai, FANG Hai-Ping. Drop Size Dependence of the Contact Angle of Nanodroplets[J]. Chin. Phys. Lett., 2005, 22(4): 046801
Viewed
Full text


Abstract