Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 045202    DOI: 10.1088/0256-307X/32/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Reduction of Reactive-Ion Etching-Induced Ge Surface Roughness by SF6/CF4 Cyclic Etching for Ge Fin Fabrication
MA Xue-Zhi1, ZHANG Rui2, SUN Jia-Bao2, SHI Yi1, ZHAO Yi1,2,3**
1School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027
3State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027
Cite this article:   
MA Xue-Zhi, ZHANG Rui, SUN Jia-Bao et al  2015 Chin. Phys. Lett. 32 045202
Download: PDF(839KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An SF6/CF4 cyclic reactive-ion etching (RIE) method is proposed to suppress the surface roughness and to optimize the morphology of Ge fin, aiming at the fabrication of superior Ge FinFETs for future CMOS technologies. The surface roughness of the Ge after RIE can be sufficiently reduced by introducing SF6-O2 etching steps into the CF4-O2 etching process, while maintaining a relatively large ratio of vertical etching over horizontal etching of the Ge. As a result, an optimized rms roughness of 0.9 nm is achieved for Ge surfaces after the SF6/CF4 cyclic etching with a ratio of greater than four for vertical etching over horizontal etching of the Ge, by using a proportion of 60% for SF6-O2 etching steps.
Received: 25 January 2015      Published: 30 April 2015
PACS:  52.77.Bn (Etching and cleaning)  
  68.35.Ct (Interface structure and roughness)  
  85.30.Tv (Field effect devices)  
  72.80.Cw (Elemental semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/045202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/045202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Xue-Zhi
ZHANG Rui
SUN Jia-Bao
SHI Yi
ZHAO Yi
[1] Takagi S, Mizuno T, Tezuka T et al 2003 IEEE Int. Electron. Devices Meeting p 57
[2] Auth C, Allen C, Blattner A et al 2012 IEEE Symposia VLSI Technol. Circuits (Hawaii 11–15 June 2012)
[3] Ruch J G 1972 IEEE Trans. Electron Devices 19 652
[4] Yu W, Nowak C H J, Noda K and Hu C 1997 IEEE Trans. Electron Devices 44 627
[5] Zhao Y, Takenaka M and Takagi S 2009 IEEE Trans. Electron Devices 56 1152
[6] Zhao Y, Takenaka M and Takagi S 2009 IEEE Electron Device Lett. 30 987
[7] http://www.itrs.net/Links/2013ITRS/Summary2013.htm
[8] Shang H, Frank M M, Gusev E P, Chu J O, Bedell S W, Guarini K W and Ieong M 2006 IBM J. Res. Develop. 50 377
[9] Saraswat K C, Chui C O, Krishnamohan T, Nayfeh A and McIntyre P 2005 Microelectron. Eng. 80 15
[10] Wang H J, Han G Q, Liu Y, Yan J, Zhang C F, Zhang J C and Hao Y 2014 Chin. Phys. Lett. 31 058503
[11] Duriez B, Vellianitis G, van Dal M J H et al 2012 IEEE Int. Electron. Devices Meeting (San Francisco CA 10–13 December 2012) p 523
[12] Dal M J H van, Vellianitis G, Doornbos G et al 2013 IEEE Int. Electron. Devices Meeting (Washington D.C 09–11 December 2013) p 521
[13] Yu W B, Nowak C H J, Noda K and Hu C 1997 IEEE Trans. Electron Devices 44 627
[14] Huang X, Lee W C, Kuo C, Hisamoto D et al 1999 IEEE Int. Electron. Devices Meeting (Washington D.C 5–8 December 1999) p 67
[15] Hisamoto D, Lee W C, Kedzierski J et al 2000 IEEE Trans. Electron Devices 47 2320
[16] Duriez B, Vellianitis G, van Dal M J H et al 2013 IEEE Int. Electron. Devices Meeting (Washington D.C 09–11 December 2013) p 2011
[17] Wang J C, Du G, Wei K L et al 2012 Chin. Phys. B 21 117308
[18] Zhang R, Yu X, Takenaka M and Takagi S 2014 IEEE Trans. Electron Devices 61 2316
[19] Lee C H, Nishimura T, Tabata T, Lu C, Zhang W F, Nagashio K and Toriumi A 2013 IEEE Int. Electron. Devices Meeting (Washington DC 09–11 December 2013) p 33
[20] Lee C H, Liu C, Tabata T, Nishimura T, Nagashio K and Toriumi A 2013 IEEE Symposia VLSI Technol. Circuits (Taipei 22–24 April 2013) p 28
[21] Liu B, Gong X, Zhan C, Han G, Chin H C et al 2013 IEEE Trans. Electron Devices 60 1852
[22] Onsia B, Conard T, de Gendt S et al 2004 7th Int. Symp. UCPSS (Brussels Belgium 20–22 September 2004) p 20
[23] Shamiryan D, Redolfi A and Boullart W 2009 Microelectron. Eng. 86 96
[24] Oehrlein G S, Bestwick T D, Jones P L, Jaso M A and Lindstr?m J L 1991 J. Electronchem. Soc. 138 1443
[25] Dal M J H van, Vellianitis G, Doornbos G et al 2012 IEEE Int. Electron. Devices Meeting (San Francisco CA 10–13 December 2012) p 521
[26] Qin J Y, Du G and Liu X Y 2013 Chin. Phys. B 22 107104
[27] Wang J X, Yang S Y, Wang J et al 2013 Chin. Phys. B 22 077305
[28] Baravelli E, Marchi L D and Speciale N 2009 Solid-State Electron. 53 1303
[29] Kim T S, Yang H Y, Kil Y H, Jeong T S, Kang S and Shim K H 2009 J. Korean Phys. Soc. 54 2290
[30] Shim K, Yang H, Kil Y, Yang H, Yang J, Hong W, Kang S, Jeong T and Kim T 2012 Electron. Mater. Lett. 8 423
[31] Campo A, Cardinaud C and Turban G 1995 J. Vac. Sci. Technol. B 13 235
Related articles from Frontiers Journals
[1] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 045202
[2] A. Limcharoen, C. Pakpum, P. Limsuwan. A Polymer-Rich Re-deposition Technique for Non-volatile Etching By-products in Reactive Ion Etching Systems[J]. Chin. Phys. Lett., 2013, 30(7): 045202
[3] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 045202
[4] HAO Mei-Lan, DAI Zhong-Ling, WANG You-Nian. Simulation of Dual Frequency Capacitive Sheath over a Concave Electrode in Low Pressure[J]. Chin. Phys. Lett., 2009, 26(12): 045202
[5] GAO Hai-Yong, YAN Fa-Wang, FAN Zhong-Chao, LI Jin-Min, ZENG Yi-Ping, WANG Guo-Hong. Improved Light Extraction of GaN-based LEDs with Nano-roughened p-GaN Surfaces[J]. Chin. Phys. Lett., 2008, 25(9): 045202
[6] XU Yi-Jun, YE Chao, HUANG Xiao-Jiang, YUAN Jing, XING Zhen-Yu, NINGZhao-Yuan. CHF3 Dual-Frequency Capacitively Coupled Plasma by Optical Emission Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(8): 045202
[7] ZHONG Min, SONG Zhi-Tang, LIU Bo, FENG Song-Lin, CHEN Bomy. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device[J]. Chin. Phys. Lett., 2008, 25(2): 045202
[8] LIU Han-Ping, LU Fei, WANG Xue-Lin, YANG Tian-Lin, LV Ying-Bo, LI Yan-Hui, LIU Xiang-Zhi, ZHANG Rui-Feng, SONG Qiang, MA Xue-Jian. Analysis and Determination of Refractive Index Profiles of O2+ Ion-Implanted LiNbO3 Planar Waveguide Using Etching and Ellipsometry Techniques[J]. Chin. Phys. Lett., 2008, 25(1): 045202
[9] WANG Jian, TIAN Jian-Bai, XIONG Bing, SUN Chang-Zheng, HAO Zhi-Biao, LUO Yi. Deep InP Gratings for Opto-Electronic Devices Etched by Cl2/CH4/Ar Inductively Coupled Plasma[J]. Chin. Phys. Lett., 2006, 23(8): 045202
[10] LEE Chee-Wei, CHIN Mee-Koy. Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl2N2 and Cl2/CH4/H2[J]. Chin. Phys. Lett., 2006, 23(4): 045202
[11] SHU Xiong-Wen, XU Chen, TIAN Zeng-Xia, SHEN Guang-Di. Ion Cleaning of Facets for Improving the Reliability of High Power 980nm Semiconductor Lasers[J]. Chin. Phys. Lett., 2006, 23(1): 045202
[12] SUN Chang-Zheng, ZHOU Jin-Bo, XIONG Bing, WANG Jian, LUO Yi. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature[J]. Chin. Phys. Lett., 2003, 20(8): 045202
Viewed
Full text


Abstract