FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Polarization-Stable 980 nm Vertical-Cavity Surface-Emitting Lasers with Diamond-Shaped Oxide Aperture |
WU Hua1,2, LI Chong1, HAN Min-Fu1, WANG Wen-Juan1, SHI Lei1, LIU Qiao-Li1, LIU Bai1, DONG Jian1, GUO Xia1** |
1Photonic Device Research Laboratory, College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 2College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000
|
|
Cite this article: |
WU Hua, LI Chong, HAN Min-Fu et al 2015 Chin. Phys. Lett. 32 044202 |
|
|
Abstract Polarization-stable 980 nm oxide-confined vertical-cavity surface-emitting lasers with 3 m diamond-shaped aperture are fabricated by comprehensively utilizing the anisotropic properties of wet etching and wet nitrogen oxidation of III–V semiconductor materials. Polarization-stable operation along the major axis of the diamond-shaped oxide aperture with 11 dB orthogonal polarization suppression ratio is achieved in a temperature range of 15–55°C from the threshold to 4 mA.
|
|
Received: 21 December 2014
Published: 30 April 2015
|
|
|
|
|
|
[1] Larsson A 2011 IEEE J. Sel. Top. Quantum Electron. 17 1552 [2] Dalir H and Koyama F 2013 Appl. Phys. Lett. 103 091109 [3] Tan F, Wu M K, Liu M, Feng M and Holonyak J N 2013 Appl. Phys. Lett. 103 141116 [4] Miah M J, Samaneh A A, Kern A, Wahl D, Debernardi P and Michalzik R 2013 IEEE J. Sel. Top. Quantum Electron. 19 1701410 [5] Choquette K D, Richie D A and Leibenguth R E 1994 Appl. Phys. Lett. 64 2062 [6] Tatum J A 2014 Proc. SPIE 9001 90010C [7] Grabher M, King R, Jager R, Wiedenmann D, Gerlach P, Ducheck D and Wimmer C 2008 Proc. SPIE 6908 690803 [8] Debernardi P, Unold H J, Maehnss J, Michalzik R, Bava G P and Ebeling K J 2003 IEEE J. Sel. Top. Quantum Electron. 9 1394 [9] Lee K H, Baek J H, Hwang I K and Lee Y H 2004 Opt. Express 12 4136 [10] Li S, Guan B L, Shi G Z and Guo X 2012 Acta Phys. Sin. 61 184208 (in Chinese) [11] Samaneh A A, Sanayeh M B, Miah M J, Schwarz W, Wahl D, Kern A and Michalzik R 2012 Appl. Phys. Lett. 101 171104 [12] Rao Y, Yang W J, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E and Hasnain C J C 2013 IEEE J. Sel. Top. Quantum Electron. 19 1701311 [13] Tarui Y, Komiya Y and Harada Y 1971 J. Electrochem. Soc. 118 118 [14] Choquette K D, Geib K M, Ashby C H, Twesten R D, Hou H Q, Follstaedt D M, Hammons B E, Mathes D and Hull R 1997 IEEE J. Sel. Top. Quantum Electron. 3 916 [15] Cheng P, Gao J H, Kang X J, Lin S M, Zhang G B, Liu S A and Hu G X 2000 Chin. J. Semicond. 21 28 [16] Weigl B, Grabherr M, Jung C, Jager R, Reiner G, Michalzik R, Sowada D and Ebeling K J 1997 IEEE J. Sel. Top. Quantum Electron. 3 409 [17] Molitor A, Blazek M, Ostermann J M, Michalzik R, Debernardi P and Elsaesser W 2010 IEEE J. Quantum Electron. 46 554 [18] Nhan E and Riyopoulos S 2006 J. Appl. Phys. 99 123101 [19] Bond A, Dapkus P D and O'Brien J D 1999 IEEE J. Sel. Top. Quantum Electron. 5 574 [20] Riyopoulos S and Nhan E 2004 Appl. Phys. Lett. 85 3038 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|