Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 044201    DOI: 10.1088/0256-307X/32/4/044201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter
LU Bao-Le1,2,3, HUANG Sheng-Hong1,2,3, YIN Mo-Juan1,2,3, CHEN Hao-Wei1,2,3, REN Zhao-Yu1,2,3, BAI Jin-Tao1,2,3,4
1National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069
2Shaanxi Engineering Technology Research Center for Solid State Lasers and Application, Xi'an 710069
3Institute of Photonics and Photon-technology, Provincial Key Laboratory of Photo-electronic Technology, Northwest University, Xi'an 710069
4Department of Physics, Northwest University, Xi'an 710069
Cite this article:   
LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan et al  2015 Chin. Phys. Lett. 32 044201
Download: PDF(583KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.7 nm with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 mW while the pump power increases to 120 mW. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.
Received: 16 October 2014      Published: 30 April 2015
PACS:  42.55.Wd (Fiber lasers)  
  42.81.Gs (Birefringence, polarization)  
  42.79.Dj (Gratings)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/044201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/044201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Bao-Le
HUANG Sheng-Hong
YIN Mo-Juan
CHEN Hao-Wei
REN Zhao-Yu
BAI Jin-Tao
[1] Wang X F, Zhu C and Zhou S H 2014 Acta Phys. Sin. 63 134205 (in Chinese)
[2] Poulsen C V, Varming P, Pedersen J E, Beukema M and Lauridsen S L 2003 Lasers Electro-Opt. Europe. CLEO/Europe p 617
[3] Geng J, Spiegelberg C and Jiang S 2005 IEEE Photon. Technol. Lett. 17 1827
[4] Hanna D C, Percival R M, Perry I R, Smart R G, Suni P J and Tropper A C 1990 J. Mod. Opt. 37 517
[5] Engelbrecht M, Ruehl A, Wandt D and Kracht D 2007 Opt. Express 15 4617
[6] Zhu T, Bao X Y and Chen L 2011 J. Lightwave Technol. 29 1802
[7] Wang X, Zhou, Wang X, Xiao H and Si L 2013 Opt. Express 21 32386
[8] Iwatsuki K, Okamura H and Saruwatari M 1990 Electron. Lett. 26 2033
[9] Hsu K, Miller C M, Kringlebotn J T and Patne D N 1995 Opt. Lett. 20 377
[10] Jauncey I M, Reekie L, Townsend J E, Payne D N and Rowe C J 1988 Electron. Lett. 24 24
[11] Kringlebotn J T, Archambault J L, Reekie L, Townsend J E, Vienne G G and Payne D N 1994 (OFC-94) San Jose CA
[12] Li X H, Liu X M, Gong Y K, Sun H B, Wang L R and Lu K Q 2010 Laser Phys. Lett. 7 55
[13] Liu J, Yao J P, Yao J and Yeap T H 2004 IEEE Photon. Technol. Lett. 16 1020
[14] Shama U, Kim C S and Kang J U 2004 IEEE Photon. Technol. Lett. 16 1277
[15] Paschotta R, Nilsson J, Reekie L, Tropper A C and Hanna D C 1997 Opt. Lett. 22 40
[16] Chen H X, Babin F, Leblanc M and Schinn G W 2003 IEEE Photon. Technol. Lett. 15 185
[17] Huang S H, Qin G H, Feng Y and Ueda K I 2005 IEEE Photon. Technol. Lett. 17 1169
[18] Havstad S A, Fischer B, Willner A E and Wickham M G 1999 Opt. Lett. 24 1466
[19] Agrawal G P and Lax M 1981 J. Opt. Soc. Am. 71 515
[20] Zyskind J L 1991 Electron. Lett. 27 2148
[21] Horowitz M, Daisy R, Fischer B and Zyskind J L 1994 Opt. Lett. 19 1406
[22] Pilipovich V A, Esman A K, Goncharenko I A and Kuleshov V K 2003 J. Opt. Technol. 70 173
[23] Pedersen C and Skettrup T 1996 J. Opt. Soc. Am. B 13 926
[24] Ahmad H, Malaysia B T, Muhammad F D, Zulkifli M Z, Latif A A and Harun S W 2012 J. Lightwave Technol. 30 2097
[25] Kashyap R 1999 Fiber Bragg Gratings (New York: Academic Press)
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 044201
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 044201
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044201
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 044201
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 044201
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 044201
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 044201
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 044201
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 044201
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 044201
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 044201
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 044201
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 044201
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 044201
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 044201
Viewed
Full text


Abstract