Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040502    DOI: 10.1088/0256-307X/32/4/040502
GENERAL |
Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity
HAN Fang1, WANG Zhi-Jie1**, FAN Hong2, GONG Tao1
1College of Information Science and Technology, Donghua University, Shanghai 201620
2Glorious Sun School of Business and Management, Donghua University, Shanghai 200051
Cite this article:   
HAN Fang, WANG Zhi-Jie, FAN Hong et al  2015 Chin. Phys. Lett. 32 040502
Download: PDF(680KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is known that both excitatory and inhibitory neuronal networks can achieve robust synchronization only under certain conditions, such as long synaptic delay or low level of heterogeneity. In this work, robust synchronization can be found in an excitatory/inhibitory (E/I) neuronal network with medium synaptic delay and high level of heterogeneity, which often occurs in real neuronal networks. Two effects of post-synaptic potentials (PSP) to network synchronization are presented, and the synaptic contribution of excitatory and inhibitory neurons to robust synchronization in this E/I network is investigated. It is found that both excitatory and inhibitory neurons may contribute to robust synchronization in E/I networks, especially the excitatory PSP has a more positive effect on synchronization in E/I networks than that in excitatory networks. This may explain the strong robustness of synchronization in E/I neuronal networks.
Received: 08 December 2014      Published: 30 April 2015
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Fang
WANG Zhi-Jie
FAN Hong
GONG Tao
[1] Wang X J 2010 Physiol. Rev. 90 1195
[2] Tiesinga P and Sejnowski T J 2009 Neuron 63 727
[3] Bartos M et al 2007 Nat. Rev. Neurosci. 8 45
[4] Brunel N and Hansel D 2006 Neural Comput. 18 1066
[5] Bathellier B, Carleton A and Gerstner W 2008 Neural Comput. 20 2973
[6] Vida I, Bartos M and Jonas P 2006 Neuron 49 107
[7] Gerstner W, van Hemmen J L and Cowan J D 1996 Neural Comput. 8 1653
[8] Wolfgang M and Christopher M B 1999 Pulsed Neural Networks (Cambridge: MIT Press)
[9] Wang X J and Buzsaki G 1996 J. Neurosci. 16 6402
[10] Han F, Wang Z J, Du Y et al 2014 Int. J. Non-Linear Mech. 70 105
[11] Dayan P and Abbott L F 2001 Theoretical Neuroscience (Cambridge: MIT Press)
[12] Wang Z and Wong W K 2013 Neural Networks 43 55
[13] Han F, Wiercigroch M, Fang J A and Wang Z J 2011 Int. J. Neural Syst. 21 415
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 040502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 040502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 040502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 040502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 040502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 040502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 040502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 040502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 040502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 040502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 040502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 040502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 040502
[14] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 040502
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 040502
Viewed
Full text


Abstract