Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 118902    DOI: 10.1088/0256-307X/32/11/118902
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Phase Transitions of Majority-Vote Model on Modular Networks
HUANG Feng1, CHEN Han-Shuang2**, SHEN Chuan-Sheng3
1School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601
2School of Physics and Material Science, Anhui University, Hefei 230601
3Department of Physics, Anqing Normal University, Anqing 246011
Cite this article:   
HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng 2015 Chin. Phys. Lett. 32 118902
Download: PDF(614KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the phase transitions behavior of the majority-vote model with noise on a topology that consists of two coupled random networks. A parameter p is used to measure the degree of modularity, defined as the ratio of intermodular to intramodular connectivity. For the networks of strong modularity (small p), as the level of noise f increases, the system undergoes successively two transitions at two distinct critical noises, fc1 and fc2. The first transition is a discontinuous jump from a coexistence state of parallel and antiparallel order to a state that only parallel order survives, and the second one is continuous that separates the ordered state from a disordered state. As the network modularity worsens, fc1 becomes smaller and fc2 does not change, such that the antiparallel ordered state will vanish if p is larger than a critical value of pc. We propose a mean-field theory to explain the simulation results.
Received: 10 August 2015      Published: 01 December 2015
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.-a (Nonlinear dynamics and chaos)  
  64.60.Cn (Order-disorder transformations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/118902       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/118902
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Feng
CHEN Han-Shuang
SHEN Chuan-Sheng
[1] Dorogovtsev S N, Goltseve A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[2] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[3] Stauffer D, Fortunato S and Loreto V 2008 Am. J. Phys. 76 470
[4] de Oliveira M J 1992 J. Stat. Phys. 66 273
[5] Pereira L F C and Moreira F G B 2005 Phys. Rev. E 71 016123
[6] Lima F W S, Sousa A and Sumuor M 2008 Physica A 387 3503
[7] Campos P R A, de Oliveira V M and Moreira F G B 2003 Phys. Rev. E 67 026104
[8] Luz E M S and Lima F W S 2007 Int. J. Mod. Phys. C 18 1251
[9] Stone T E and McKay S R 2015 Physica A 419 437
[10] Lima F W S 2006 Int. J. Mod. Phys. C 17 1257
[11] Lima F W S and Malarz K 2006 Int. J. Mod. Phys. C 17 1273
[12] Kwak W, Yang J S, Sohn Y I and Kim I M 2007 Phys. Rev. E 75 061110
[13] Yang J S, Kim I M and Kwak W 2008 Phys. Rev. E 77 051122
[14] Wu Z X and Holme P 2010 Phys. Rev. E 81 011133
[15] Santos J, Lima F and Malarz K 2011 Physica A 390 359
[16] Acu?a-Lara A L and Sastre F 2012 Phys. Rev. E 86 041123
[17] Acu?a-Lara A L, Sastre F and Vargas-Arriola J R 2014 Phys. Rev. E 89 052109
[18] Chen H, Shen C, He G, Zhang H and Hou Z 2015 Phys. Rev. E 91 022816
[19] Newman M E J 2006 Proc. Natl. Acad. Sci. USA 103 8577
[20] Fortunato S 2010 Phys. Rep. 486 75
[21] Arenas A, Díaz-Guilera A and Pérez-Vicente C J 2006 Phys. Rev. Lett. 96 114102
[22] Li D et al 2008 Phys. Rev. Lett. 101 168701
[23] Zhou C et al 2006 Phys. Rev. Lett. 97 238103
[24] Liu Z and Hu B 2005 Europhys. Lett. 72 315
[25] Zhou Y Z, Liu Z H and Zhou J 2007 Chin. Phys. Lett. 24 581
[26] Huang L, Park K and Lai Y C 2006 Phys. Rev. E 73 035103
[27] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 088701
[28] Lambiotte R and Ausloos M 2007 J. Stat. Mech. 2007 P08026
[29] Lambiotte R, Ausloos M and Ho?yst J A 2007 Phys. Rev. E 75 030101
[30] Wang R and Chi L P 2007 Chin. Phys. Lett. 24 1502
[31] Pan R K and Sinha S 2009 Europhys. Lett. 85 68006
[32] Dasgupta S, Pan R K and Sinha S 2009 Phys. Rev. E 80 025101(R)
[33] Suchecki K and Ho?yst J A 2009 Phys. Rev. E 80 031110
[34] Chen H and Hou Z 2011 Phys. Rev. E 83 046124
[35] Zhou H and Lipowsky R 2005 Proc. Natl. Acad. Sci. USA 102 10052
[36] Castellano C and Pastor-Satorras R 2006 J. Stat. Mech. 2006 P05001
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 118902
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 118902
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 118902
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 118902
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 118902
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 118902
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 118902
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 118902
[9] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 118902
[10] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 118902
[11] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 118902
[12] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 118902
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 118902
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 118902
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 118902
Viewed
Full text


Abstract