CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electronic Structure Properties in the Nematic Phases of FeSe |
LIANG Yi1, WU Xian-Xin1, HU Jiang-Ping1,2,3** |
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA 5Collaborative Innovation Center of Quantum Matter, Beijing 100875
|
|
Cite this article: |
LIANG Yi, WU Xian-Xin, HU Jiang-Ping 2015 Chin. Phys. Lett. 32 117402 |
|
|
Abstract We investigate the electronic structures of FeSe in the presence of different possible orders and spin-orbit coupling (SOC). It is found that only the ferro-orbital order (FO) and the collinear antiferro-magnetism (C-AFM) can simultaneously induce splittings at Γ and M. Bicollinear antiferro-magnetism (B-AFM) and SOC have very similar band structures on Γ–M near the Fermi level. The temperature T insensitive splitting at Γ and the T-dependent splitting at M observed in recent experiments can be explained by the d-wave bond nematic (dBN) order together with SOC. The recent observed Dirac cones and their T-dependence in FeSe thin films can also be well explained by the dBN order together with the band renormalization. Their thickness- and cobalt-doping-dependent behaviors are the consequences of electron doping and reduction of Se height. All these suggest that the nematic order in the FeSe system is the dBN order.
|
|
Received: 15 October 2015
Published: 01 December 2015
|
|
PACS: |
74.20.Pq
|
(Electronic structure calculations)
|
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
|
|
|
[1] Fang C et al 2008 Phys. Rev. B 77 224509 [2] Qi Y and Xu C 2009 Phys. Rev. B 80 094402 [3] Cano A et al 2010 Phys. Rev. B 82 020408 [4] Liang S et al 2013 Phys. Rev. Lett. 111 047004 [5] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001 [6] Onari S and Kontani H 2012 Phys. Rev. Lett. 109 137001 [7] Yamase H and Zeyher R 2013 Phys. Rev. B 88 180502 [8] Stanev V and Littlewood P B 2013 Phys. Rev. B 87 161122 [9] Miao H et al 2014 Phys. Rev. B 89 220503 [10] Zhang P et al 2015 Phys. Rev. B 91 214503 [11] Watson M D et al 2015 arXiv:1502.02917[cond-mat.supr-con] [12] Watson M D et al 2015 arXiv:1508.05061[nucl-th] [13] Zhang Y et al 2015 arXiv:1503.01556[cond-mat.supr-con] [14] Tan S Y et al 2015 arXiv:1508.07458[cond-mat.supr-con] [15] Li W et al 2015 arXiv:1509.01892[cond-mat.supr-con] [16] Zhang W H et al 2014 Chin. Phys. Lett. 31 017401 [17] Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402 [18] Yin J X et al 2015 Nat. Phys. 11 543 [19] Hao N N and Hu J P 2014 Phys. Rev. X 4 031053 [20] Wu X X et al 2014 arXiv:1412.3375[cond-mat.supr-con] [21] Wang Z J et al 2015 Phys. Rev. B 92 115119 [22] Lee P A and Wen X G 2008 Phys. Rev. B 78 144517 [23] Su Y, Liao H and Li T 2015 J. Phys.: Condens. Matter 27 105702 [24] Mukherjee S, Kreisel A, Hirschfeld P J and Andersen B M 2015 arXiv:1502.03354[cond-mat.supr-con] [25] Jiang K, Hu J P, Ding H and Wang Z Q 2015 arXiv:1508.00588[cond-mat.supr-con] [26] Balatsky A V, Basov D N and Zhu J X 2010 Phys. Rev. B 82 144522 [27] Baek S H et al 2014 Nat. Mater. 14 210 [28] B?hmer A E et al 2015 Phys. Rev. Lett. 114 027001 [29] Rahn M C et al 2015 Phys. Rev. B 91 180501 [30] Wang Q et al 2015 arXiv:1502.07544[cond-mat.supr-con] [31] Ma F J et al 2009 Phys. Rev. Lett. 102 177003 [32] Richard P et al 2010 Phys. Rev. Lett. 104 137001 [33] Cao H Y, Chen S Y, Xiang H J and Gong X G 2015 Phys. Rev. B 91 020504 [34] Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016 [35] Landau L D and Lifshitz E M 2008 Quantum Mechanics: Non-Relativistic Theory 3rd edn chap 6 (Oxford: Butterworth-Heinemann) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|