Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117402    DOI: 10.1088/0256-307X/32/11/117402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure Properties in the Nematic Phases of FeSe
LIANG Yi1, WU Xian-Xin1, HU Jiang-Ping1,2,3**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
5Collaborative Innovation Center of Quantum Matter, Beijing 100875
Cite this article:   
LIANG Yi, WU Xian-Xin, HU Jiang-Ping 2015 Chin. Phys. Lett. 32 117402
Download: PDF(1007KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electronic structures of FeSe in the presence of different possible orders and spin-orbit coupling (SOC). It is found that only the ferro-orbital order (FO) and the collinear antiferro-magnetism (C-AFM) can simultaneously induce splittings at Γ and M. Bicollinear antiferro-magnetism (B-AFM) and SOC have very similar band structures on ΓM near the Fermi level. The temperature T insensitive splitting at Γ and the T-dependent splitting at M observed in recent experiments can be explained by the d-wave bond nematic (dBN) order together with SOC. The recent observed Dirac cones and their T-dependence in FeSe thin films can also be well explained by the dBN order together with the band renormalization. Their thickness- and cobalt-doping-dependent behaviors are the consequences of electron doping and reduction of Se height. All these suggest that the nematic order in the FeSe system is the dBN order.
Received: 15 October 2015      Published: 01 December 2015
PACS:  74.20.Pq (Electronic structure calculations)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117402       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Yi
WU Xian-Xin
HU Jiang-Ping
[1] Fang C et al 2008 Phys. Rev. B 77 224509
[2] Qi Y and Xu C 2009 Phys. Rev. B 80 094402
[3] Cano A et al 2010 Phys. Rev. B 82 020408
[4] Liang S et al 2013 Phys. Rev. Lett. 111 047004
[5] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
[6] Onari S and Kontani H 2012 Phys. Rev. Lett. 109 137001
[7] Yamase H and Zeyher R 2013 Phys. Rev. B 88 180502
[8] Stanev V and Littlewood P B 2013 Phys. Rev. B 87 161122
[9] Miao H et al 2014 Phys. Rev. B 89 220503
[10] Zhang P et al 2015 Phys. Rev. B 91 214503
[11] Watson M D et al 2015 arXiv:1502.02917[cond-mat.supr-con]
[12] Watson M D et al 2015 arXiv:1508.05061[nucl-th]
[13] Zhang Y et al 2015 arXiv:1503.01556[cond-mat.supr-con]
[14] Tan S Y et al 2015 arXiv:1508.07458[cond-mat.supr-con]
[15] Li W et al 2015 arXiv:1509.01892[cond-mat.supr-con]
[16] Zhang W H et al 2014 Chin. Phys. Lett. 31 017401
[17] Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402
[18] Yin J X et al 2015 Nat. Phys. 11 543
[19] Hao N N and Hu J P 2014 Phys. Rev. X 4 031053
[20] Wu X X et al 2014 arXiv:1412.3375[cond-mat.supr-con]
[21] Wang Z J et al 2015 Phys. Rev. B 92 115119
[22] Lee P A and Wen X G 2008 Phys. Rev. B 78 144517
[23] Su Y, Liao H and Li T 2015 J. Phys.: Condens. Matter 27 105702
[24] Mukherjee S, Kreisel A, Hirschfeld P J and Andersen B M 2015 arXiv:1502.03354[cond-mat.supr-con]
[25] Jiang K, Hu J P, Ding H and Wang Z Q 2015 arXiv:1508.00588[cond-mat.supr-con]
[26] Balatsky A V, Basov D N and Zhu J X 2010 Phys. Rev. B 82 144522
[27] Baek S H et al 2014 Nat. Mater. 14 210
[28] B?hmer A E et al 2015 Phys. Rev. Lett. 114 027001
[29] Rahn M C et al 2015 Phys. Rev. B 91 180501
[30] Wang Q et al 2015 arXiv:1502.07544[cond-mat.supr-con]
[31] Ma F J et al 2009 Phys. Rev. Lett. 102 177003
[32] Richard P et al 2010 Phys. Rev. Lett. 104 137001
[33] Cao H Y, Chen S Y, Xiang H J and Gong X G 2015 Phys. Rev. B 91 020504
[34] Graser S, Maier T A, Hirschfeld P J and Scalapino D J 2009 New J. Phys. 11 025016
[35] Landau L D and Lifshitz E M 2008 Quantum Mechanics: Non-Relativistic Theory 3rd edn chap 6 (Oxford: Butterworth-Heinemann)
Related articles from Frontiers Journals
[1] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 117402
[2] Yiding Liu, Qiang Fan, Jianhui Yang, Lili Wang, Weibin Zhang, and Gang Yao. Predicted High-Temperature Superconductivity in Rare Earth Hydride ErH$_{2}$ at Moderate Pressure[J]. Chin. Phys. Lett., 2022, 39(12): 117402
[3] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 117402
[4] Lin Feng, Chen-Chen Guo, Xue-Ying Zhang, Hai-Cheng Xuan, Wen-Hong Wang, En-Ke Liu, Guang-Heng Wu. Possible Martensitic Transformation in Heusler Alloy Pt$_{2}$MnSn from First Principles[J]. Chin. Phys. Lett., 2018, 35(3): 117402
[5] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 117402
[6] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 117402
[7] A. Manzar, G. Murtaza, R. Khenata, Masood Yousaf, S. Muhammad, Hayatullah. Electronic and Optic Properties of Cubic Spinel CdX2O4 (X=In, Ga, Al) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2014, 31(06): 117402
[8] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic and Optical Properties of Spinel GeMg2O4 and GeCd2O4[J]. Chin. Phys. Lett., 2013, 30(12): 117402
[9] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, H. A. Rahnamaye Aliabad, M. R. Sahar . An Insight into the Structural, Electronic and Transport Characteristics of XIn2S4 (X = Zn, Hg) Thiospinels using a Highly Accurate All-Electron FP-LAPW+Lo Method[J]. Chin. Phys. Lett., 2013, 30(7): 117402
[10] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Profile and Optical Response of Spinel MgIn2O4 through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(6): 117402
[11] A. Manzar, G. Murtaza, R. Khenata, S. Muhammad, Hayatullah. Electronic Band Structure and Optical Response of Spinel SnX2O4 (X = Mg, Zn) through Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2013, 30(4): 117402
[12] Masood Yousaf, M. A. Saeed, Ahmad Radzi Mat Isa, Amiruddin Shaari, H. A. Rahnamaye Aliabad. Electronic Band Structure and Optical Parameters of Spinel SnMg2O4 by Modified Becke–Johnson Potential[J]. Chin. Phys. Lett., 2012, 29(10): 117402
[13] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 117402
Viewed
Full text


Abstract