Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117301    DOI: 10.1088/0256-307X/32/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer
JIAO Bo1, YAO Li-Juan1, WU Chun-Fang2, DONG Hua1, HOU Xun1, WU Zhao-Xin1**
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shannxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000
Cite this article:   
JIAO Bo, YAO Li-Juan, WU Chun-Fang et al  2015 Chin. Phys. Lett. 32 117301
Download: PDF(1016KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Room-temperature negative differential resistance (NDR) has been observed in different types of organic materials. However, detailed study on the influence of the organic material on NDR performance is still scarce. In this work, room-temperature NDR is observed when CdSe quantum dot (QD) modified ITO is used as the electrode. Furthermore, material dependence of the NDR performance is observed by selecting materials with different charge transporting properties as the active layer, respectively. A peak-to-valley current ratio up to 9 is observed. It is demonstrated that the injection barrier between ITO and the organic active layer plays a decisive role for the device NDR performance. The influence of the aggregation state of CdSe QDs on the NDR performance is also studied, which indicates that the NDR is caused by the resonant tunneling process in the ITO/CdSe QD/organic active layer structure.
Received: 17 August 2015      Published: 01 December 2015
PACS:  73.21.La (Quantum dots)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  74.50.+r (Tunneling phenomena; Josephson effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIAO Bo
YAO Li-Juan
WU Chun-Fang
DONG Hua
HOU Xun
WU Zhao-Xin
[1] Chang L L, Esaki L and Tsu R 1974 Appl. Phys. Lett. 24 593
[2] Park T J, Lee Y K, Kwon S K, Kwon J H and Jang J 2006 Appl. Phys. Lett. 89 151114
[3] Xu X H, Han M C and Yin S G 2003 Chin. J. Lumin. 24 459
[4] Wang Z, Wang T, Wang H B and Yan D H 2014 Adv. Mater. 26 4582
[5] Zheng T, Choy W C H and Sun Y 2009 Adv. Funct. Mater. 19 2648
[6] Zheng T, Choy W C H and Sun Y 2009 Appl. Phys. Lett. 94 123303
[7] Kannan V, Rajesh K R, Kim M R, Chae Y S and Rhee J K 2011 Appl. Phys. A 102 611
[8] Kannan V, Kim M R, Chae Y S, Ramana C V V and Rhee J K 2011 Nanotechnology 22 025705
[9] Yang S, Liu P, Guo S, Zhang L, Yang D, Jiang Y and Zou B 2014 Appl. Phys. Lett. 104 033301
[10] Tang W, Shi H Z, Xu G, Ong B S, Popovic Z D, Deng J C, Zhao J and Rao G H 2005 Adv. Mater. 17 2307
[11] Shin M, Lee S, Park K W and Lee E H 1998 Phys. Rev. Lett. 80 5774
[12] Shin M, Lee S, Park K W and Lee E H 1999 Phys. Rev. B 59 3160
[13] Gorman C B, Carroll R L and Fuierer R R 2001 Langmuir 17 6923
[14] Berleb S, Brütting W and Schwoerer M 1999 Synth. Met. 102 1034
[15] Qu L and Peng X 2002 J. Am. Chem. Soc. 124 2049
[16] Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 2854
[17] Jiao B, Zhu X B, Wu Z X, Yu Y and Hou X 2014 Chin. Phys. Lett. 31 097801
[18] Zhang S T, Wang Z J, Zhao J M, Zhan Y Q, Wu Y, Zhou Y C, Ding X M and Hou X Y 2004 Appl. Phys. Lett. 84 2916
[19] Barth S, Müller P, Riel H, Seidler P F, Rie? W, Vestweber H and B ?ssler H 2001 J. Appl. Phys. 89 3711
[20] Chen P, Xie W F, Li J Guan T, Duan Y, Zhao Y, Liu S Y, Ma C S, Zhang L Y and Li B 2007 Appl. Phys. Lett. 91 073511
[21] Jiao B, Wu Z X, Yan X W and Hou X 2010 Appl. Phys. A 98 239
[22] Tse S C, Kwok K C and So S K 2006 Appl. Phys. Lett. 89 262102
[23] Deng Z B, Lee S T, Webb D P, Chan Y C and Gambling W A 1999 Synth. Met. 107 107
[24] Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S and Imai K 1994 Appl. Phys. Lett. 65 807
[25] Noh S, Suman C K, Hong Y and Lee C 2009 J. Appl. Phys. 105 033709
[26] Dakhlaoui H 2013 Chin. Phys. Lett. 30 077304
[27] Bassler H 1993 Phys. Status Solidi B 175 15
[28] Simmons J G 1965 Phys. Rev. Lett. 15 967
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 117301
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 117301
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 117301
[4] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 117301
[5] Hui-Li Yin, Su-Ling Zhao, Zheng Xu, Li-Zhi Sun. Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance[J]. Chin. Phys. Lett., 2016, 33(03): 117301
[6] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 117301
[7] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 117301
[8] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 117301
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 117301
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 117301
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 117301
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 117301
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 117301
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 117301
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 117301
Viewed
Full text


Abstract