Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 115202    DOI: 10.1088/0256-307X/32/11/115202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Parametric Instabilities of Parallel Propagating Circularly Polarized Alfvén Waves: One-Dimensional Hybrid Simulations
HE Peng1, GAO Xin-Liang1**, LU Quan-Ming1, ZHAO Jin-Song2
1CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026
2Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008
Cite this article:   
HE Peng, GAO Xin-Liang, LU Quan-Ming et al  2015 Chin. Phys. Lett. 32 115202
Download: PDF(1047KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By performing one-dimensional (1-D) hybrid simulations, we analyze in detail the parametric instabilities of the Alfvén waves with a spectrum in a low beta plasma. The parametric instabilities experience two stages. In the first stage, the density modes are excited and immediately couple with the pump Alfvén waves. In the second stage, each pump Alfvén wave decays into a density mode and a daughter Alfvén mode similar to the monochromatic cases. Furthermore, the proton velocity beam will also be formed after the saturation of the parametric instabilities. When the plasma beta is high, the parametric decay in the second stage will be strongly suppressed.
Received: 10 July 2015      Published: 01 December 2015
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  94.05.Pt (Wave/wave, wave/particle interactions)  
  52.65.Ww (Hybrid methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/115202       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/115202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Peng
GAO Xin-Liang
LU Quan-Ming
ZHAO Jin-Song
[1] Barnes A and Hollweg J V 1974 J. Geophys. Res. 79 2302
[2] Hollweg J V 1974 J. Geophys. Res. 79 1539
[3] Ferraro V C A 1955 Proc. R. Soc. London A 223 310
[4] Mahajan S M and Krishan V 2005 Mon. Not. R. Astron. Soc. 359 L27–L29
[5] Galeev A A and Oraevskii V N 1963 Sov. Phys. Dokl. 7 998
[6] Sagdeev R Z and Galeev A S 1969 Nonlinear Plasma Theory (New York: Benjamin)
[7] Goldstein M L 1978 Astrophys. J. 219 700
[8] Derby N F 1978 Astrophys. J. 224 1013
[9] Lashmore-Davies C N and Stenflo L 1979 Plasma Phys. 21 735
[10] Ruderman M S and Simpson D 2004 J. Plasma Phys. 70 143
[11] Sakai J I and Sonnerup B U O 1983 J. Geophys. Res. 88 9069
[12] Longtin M and Sonnerup B U O 1986 J. Geophys. Res. 91 6816
[13] Wong H K and Goldstein M L 1986 J. Geophys. Res. 91 5617
[14] Terasawa T, Hoshino M, Sakai J I and Hada T 1986 J. Geophys. Res. 91 4171
[15] Hoshino M and Goldstein M L 1989 Phys. Fluids B 1 1405
[16] Jayanti V and Hollweg J V 1993 J. Geophys. Res. 98 19049
[17] Hollweg J V, Esser R and Jayanti V 1993 J. Geophys. Res. 98 3491
[18] Hollweg J V 1994 J. Geophys. Res. 99 23431
[19] Araneda J A 1998 Phys. Scr. T75 164
[20] Del Zanna L, Velli M and Londrillo P 2001 Astron. Astrophys. 367 705
[21] Araneda J A, Marsch E and Vinas A F 2007 J. Geophys. Res. 112 A04104
[22] Zhao J S, Voitenko Y, Wu D J and De Keyser J 2014 Astrophys. J. 785 139
[23] Zhao J S, Voitenko Y, De Keyser J and Wu D J 2015 Astrophys. J. 799 222
[24] Vinas A F and Goldstein M L 1991 J. Plasma Phys. 46 129
[25] Nariyuki Y and Hada T 2007 J. Geophys. Res. 112 A10107
[26] Nariyuki Y, Hada T and Tsubouchi K 2007 Phys. Plasmas 14 122110
[27] Kauffmann K and Araneda J A 2008 Phys. Plasmas 15 062106
[28] Matteini L, Landi S, Del Zanna L, Velli M and Hellinger P 2010 Geophys. Res. Lett. 37 L20101
[29] Verscharen D, Marsch E, Motschmann U and Muller J 2012 Phys. Rev. E 86 027401
[30] Gao X L, Lu Q M, Li X, Shan L C and Wang S 2013 Phys. Plasmas 20 072902
[31] Nariyuki Y, Hada T and Tsubouchi K 2014 Astrophys. J. 793 138
[32] Bruno R and Carbone V 2013 Living Rev. Sol. Phys. 10 2
[33] Tu C Y and Marsch E 1995 Space Sci. Rev. 73 1
[34] Narita Y, Glassmeier K H and Treumann R A 2006 Phys. Rev. Lett. 97 191101
[35] Verscharen D, Marsch E, Motschmann U and Muller J 2013 Phys. Plasmas 20 022305
[36] Howes G G 2015 Philos. Trans. R. Soc. A 373 20140145
[37] Matteini L, Landi S, Velli M and Hellinger P 2010 J. Geophys. Res. 115 A09106
[38] Winske D 1985 Space Sci. Rev. 42 53
[39] Quest K B 1988 J. Geophys. Res. 93 9649
[40] Winske D and Omidi N 1993 Computer Space Plasma Physics: Simulation Techniques and Software (Tokyo: Terra Science Publishers)
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 115202
[2] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 115202
[3] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 115202
[4] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 115202
[5] Xiao-Bo Zhang , Xin Qiao , Ai-Xia Zhang , and Ju-Kui Xue. Generation of a Plasma Waveguide with Slow-Wave Structure[J]. Chin. Phys. Lett., 2021, 38(4): 115202
[6] Yumei Hou, Wei Chen, Liming Yu , Yunpeng Zou , Min Xu , and Xuru Duan . Nonlinear Simulations of the Bump-on-Tail Instabilities in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 115202
[7] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 115202
[8] Pei-Wan Shi, Wei Chen, and Xu-Ru Duan. Energetic Particle Physics on the HL-2A Tokamak: A Review[J]. Chin. Phys. Lett., 2021, 38(3): 115202
[9] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 115202
[10] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 115202
[11] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 115202
[12] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 115202
[13] A. Lysenko, I. Volk, A. Serozhko, O. Rybalko. Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams[J]. Chin. Phys. Lett., 2017, 34(7): 115202
[14] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 115202
[15] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 115202
Viewed
Full text


Abstract