THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Critical Behavior of Dynamical Chiral Symmetry Breaking with Gauge Boson Mass in QED3 |
WANG Xiu-Zhen1, LI Jian-Feng2, YU Xin-Hua3, FENG Hong-Tao1** |
1Department of Physics, Southeast University, Nanjing 211189 2College of Mathematics and Physics, Nantong University, Nantong 226019 3School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004
|
|
Cite this article: |
WANG Xiu-Zhen, LI Jian-Feng, YU Xin-Hua et al 2015 Chin. Phys. Lett. 32 111102 |
|
|
Abstract Since the massless quantum electrodynamics in 2+1 dimensions (QED3) with nonzero gauge boson mass ζ can be used to explain some important traits of high-Tc superconductivity in planar cuprates, it is worthwhile to apply this model to analyze the nature of chiral phase transition at the critical value ζc. Based on the feature of chiral susceptibility, we show that the system at ζc exhibits a second-order phase transition which accords with the nature of appearance of the high-Tc superconductivity, and the estimated critical exponents around ζc are illustrated.
|
|
Received: 31 May 2015
Published: 01 December 2015
|
|
PACS: |
11.10.Kk
|
(Field theories in dimensions other than four)
|
|
11.15.Ex
|
(Spontaneous breaking of gauge symmetries)
|
|
11.15.Tk
|
(Other nonperturbative techniques)
|
|
11.30.Rd
|
(Chiral symmetries)
|
|
|
|
|
[1] Appelquist T, Nash D and Wijewardhana L C R 1988 Phys. Rev. Lett. 60 2575 [2] Nash D 1989 Phys. Rev. Lett. 62 3024 [3] Pennington M R and Walsh D 1991 Phys. Lett. B 253 246 [4] Curtis D C, Pennington M R and Walsh D 1992 Phys. Lett. B 295 313 [5] Maris P 1996 Phys. Rev. D 54 4049 [6] Fischer C S, Alkofer R, Dahm T and Maris P 2004 Phys. Rev. D 70 073007 [7] Rantner W and Wen X G 2001 Phys. Rev. Lett. 86 3871 [8] Franz M and Tesanovic Z 2001 Phys. Rev. Lett. 87 257003 [9] Herbut I F 2002 Phys. Rev. Lett. 88 047006 [10] Herbut I F 2002 Phys. Rev. B 66 094504 [11] Herbut I F 2005 Phys. Rev. Lett. 94 237001 [12] Wen X G and Zee A 1992 Phys. Rev. Lett. 69 1811 [13] Liu G Z and Cheng G 2002 Phys. Rev. B 66 100505 [14] Liu G Z and Cheng G 2003 Phys. Rev. D 67 065010 [15] Feng F T, Sun W M, Hu F and Zong H S 2005 Int. J. Mod. Phys. A 20 2753 [16] Feng F T, Hou F Y, Xia Y H, Wang J Y and Zong H S 2014 Eur. Phys. J. C 74 3216 [17] Deser S, Jackiw R and Templeton S 1982 Ann. Phys. 140 372 [18] Schonfeld J F 1981 Nucl. Phys. B 185 157 [19] Li J F, Hou F T, Cui Z F, Feng F T, Jiang Y and Zong H S 2014 Phys. Rev. D 90 073013 [20] Rantner W and Wen X G 2002 Phys. Rev. B 66 144501 [21] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [22] Karsch F and Laermann E 1994 Phys. Rev. D 50 6954 [23] Cheng M et al 2007 Phys. Rev. D 75 034506 [24] Wu L K, Luo X Q and Chen H S 2007 Phys. Rev. D 76 034505 [25] Zhao Y, Chang L, Yuan W and Liu Y X 2008 Eur. Phys. J. C 56 483 [26] He M, Jiang Y, Sun W M and Zong H S 2008 Phys. Rev. D 77 076008 [27] Chang L, Liu Y X, Roberts C D, Shi Y M, Sun W M and Zong H S 2009 Phys. Rev. C 79 035209 [28] He M, Hu F, Sun W M and Zong H S 2009 Phys. Lett. B 675 32 [29] Feng H T 2012 Mod. Phys. Lett. A 27 1250209 [30] Feng H T, Li J F, Shi Y M and Zong H S 2014 Phys. Rev. D 90 065005 [31] Fisher C S, Luecker J and Muller J A 2011 Phys. Lett. B 702 438 [32] Feng H T, Shi S, Yin P L and Zong H S 2012 Phys. Rev. D 86 065002 [33] Bashir A, Raya A, Cloet I C and Roberts C D 2008 Phys. Rev. C 78 055201 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|