Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 109501    DOI: 10.1088/0256-307X/32/10/109501
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Quintessence Cosmology with an Effective Λ-Term in Lyra Manifold
Khurshudyan M.1**, Pasqua A.2, Sadeghi J.3, Farahani H.3**
1Chair of Theoretical Physics and Physics Teaching Methods, Armenian State Pedagogical University, Yerevan 375010, Republic of Armenia
2Department of Physics, University of Trieste, Trieste 234127, Italy
3Department of Physics, University of Mazandaran, Babolsar 47416-95447, Iran
Cite this article:   
Khurshudyan M., Pasqua A., Sadeghi J. et al  2015 Chin. Phys. Lett. 32 109501
Download: PDF(491KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study quintessence cosmology with an effective Λ-term in Lyra manifold. We consider three different models by choosing variable Λ depending on time, the Hubble parameter and the energy density of dark matter and dark energy. Dark energy is assumed as quintessence which interacts with the dark matter. Using numerical analysis we investigate the behavior of cosmological parameters in three different models and compare our results with observational data. State-finder diagnostic is also performed for all models.
Received: 23 May 2015      Published: 30 October 2015
PACS:  95.35.+d (Dark matter)  
  95.85.-e (Astronomical observations (additional primary heading(s) must be chosen with these entries to represent the astronomical objects and/or properties studied))  
  98.80.-k (Cosmology)  
  95.30.Cq (Elementary particle processes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/109501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/109501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Khurshudyan M.
Pasqua A.
Sadeghi J.
Farahani H.
[1] Padmanabhan T 2003 Phys. Rep. 380 235
[2] Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[3] Nobbenhuis S 2006 Found Phys. 36 613
[4] Armendariz-Picon C, Mukhanov V and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438
[5] Yang R J et al 2011 Chin. Phys. Lett. 28 109502
[6] Bento M C et al 2002 Phys. Rev. D 66 043507
[7] Saadat H and Pourhassan B 2013 Astrophys. Space Sci. 343 783
[8] Debnath U 2011 Chin. Phys. Lett. 28 119801
[9] Saadat H and Pourhassan B 2013 Astrophys. Space Sci. 344 237
[10] Xu L et al 2012 Eur. Phys. J. C 72 1883
[11] Pourhassan B 2013 Int. J. Mod. Phys. D 22 1350061
[12] Saadat H and Farahani H 2013 Int. J. Theor. Phys. 52 1160
[13] Saadat H and Pourhassan B 2013 Int. J. Theor. Phys. 52 3712
[14] Sadeghi J et al 2014 Int. J. Theor. Phys. 53 125
[15] Sadeghi J et al 2014 Int. J. Theor. Phys. 53 911
[16] Sadeghi J and Farahani H 2013 Astrophys. Space Sci. 347 209
[17] Sadeghi J et al 2015 Int. J. Theor. Phys. 54
[18] Wu Y B et al 2014 Chin. Phys. Lett. 31 029801
[19] Saadat H and Pourhassan B 2014 Int. J. Theor. Phys. 53 1168
[20] Yang R J 2014 Phys. Rev. D 89 063014
[21] Peebles P J E and Ratra B 1988 Astrophys. J. Lett. 325 L17
[22] Khurshudyan M et al 2014 Int. J. Theor. Phys. 53 2370
[23] Tsujikawa S 2013 Class. Quantum Grav. 30 214003
[24] Shchigolev V K 2013 Chin. Phys. Lett. 30 119801
[25] Chaubey R and Shukla A K 2013 Int. J. Theor. Phys. 52 735
[26] Sahu S K and Tapas K 2013 Int. J. Theor. Phys. 52 793
[27] Khurshudyan M et al 2015 Can. J. Phys. 93 449
[28] Khurshudyan M et al 2014 Can. J. Phys. 92 1494
[29] Khurshudyan M 2014 Open Phys. 12 348
[30] Sadeghi J et al 2015 Res. Astron. Astrophys. 15 175
[31] Sadeghi J et al 2013 J. Cosmol. Astropart. Phys. 12 031
[32] Sadeghi J et al 2014 Int. J. Theor. Phys. 53 2246
[33] Pourhassan B and Khurshudyan M 2014 Int. J. Geometric Methods Mod. Phys. 11 1450061
[34] Sadeghi J et al 2014 Adv. High Energy Phys. 2014 129085
[35] Li Y H et al 2013 Chin. Phys. B 22 039501
[36] Lü J B et al 2011 Chin. Phys. B 20 079801
[37] Amirhashchi H et al 2011 Chin. Phys. Lett. 28 039801
[38] Chen J H et al 2011 Chin. Phys. Lett. 28 029801
[39] Sahni V et al 2003 JETP Lett. 77 201
[40] Katore S D and Shaikh A Y 2012 African Rev. Phys. 7 0004
[41] Adhav K S 2012 Adv. Math. Phys. 2012 714350
Related articles from Frontiers Journals
[1] Kai Liao, Marek Biesiada, and Zong-Hong Zhu. Strongly Lensed Transient Sources: A Review[J]. Chin. Phys. Lett., 2022, 39(11): 109501
[2] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 109501
[3] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 109501
[4] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 109501
[5] QIN Hong-Yi**, WANG Wen-Yu, XIONG Zhao-Hua . A Simple Singlet Fermionic Dark-Matter Model Revisited[J]. Chin. Phys. Lett., 2011, 28(11): 109501
[6] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 109501
[7] M. R. Setare. Interacting Holographic Dark Energy in the Scalar Gauss-Bonnet Gravity[J]. Chin. Phys. Lett., 2009, 26(2): 109501
[8] XIAO Wei-Ke, PENG Chang, YE Xian-Feng, HAO Heng. Detection of a Physical Difference between the CDM Halos in Simulation and in Nature[J]. Chin. Phys. Lett., 2006, 23(5): 109501
[9] CHOU Chih-Kang, PENG Qiu-He, . On the Stability of a Magnetized Disk with a Massive Corotating Halo[J]. Chin. Phys. Lett., 2001, 18(4): 109501
[10] ZHU Zong-hong, WU Jiang-hua, ZHANG Yuan-zhong. A New Estimate for the Dispersion Velocity of Galactic Dark Matter Particles[J]. Chin. Phys. Lett., 1998, 15(8): 109501
Viewed
Full text


Abstract