Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 101101    DOI: 10.1088/0256-307X/32/10/101101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Tunneling of Relativistic Bosons Induced by Magnetic Fields in the Magnetar's Crust
Marina-Aura Dariescu**, Ciprian Dariescu, Denisa-Andreea Mihu
Faculty of Physics, Alexandru Ioan Cuza University of Iaşi Bd. Carol I, Iaşi 700506, Romania
Cite this article:   
Marina-Aura Dariescu, Ciprian Dariescu, Denisa-Andreea Mihu 2015 Chin. Phys. Lett. 32 101101
Download: PDF(541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The present work is devoted to the study of bosons evolving in the frozen magnetar's crust endowed with an ultra-strong magnetic field orthogonal to an electric field, both described by periodic functions. We discuss the quantum tunneling process through the one-dimensional potential barrier along Oz. The solutions to the Klein–Gordon equation are expressed in terms of Mathieu's functions which, for computable particle's energy range, are turning from oscillatory to exponentially growing modes along Oz. Within the Jeffreys–Wentzel–Kramers–Brillouin framework, the transmission coefficient is computed for the particle momentum in the middle of the instability range.
Received: 15 May 2015      Published: 30 October 2015
PACS:  11.15.-q (Gauge field theories)  
  97.10.Ld (Magnetic and electric fields; polarization of starlight)  
  97.60.Jd (Neutron stars)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/101101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/101101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Marina-Aura Dariescu
Ciprian Dariescu
Denisa-Andreea Mihu
[1] Duncan R C and Thompson C 1992 Astrophys. J. 392 L9
[2] Goldreich P and Reisenegger A 1992 Astrophys. J. 395 250
[3] Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H and Du Y J 2015 arXiv:1505.07013 [astro-ph.]
[4] Ruffini R, Vereshchagin G and Xue S S 2010 Phys. Rep. 487 1
[5] Thompson C 2008 Astrophys. J. 688 1258
[6] Beloborodov A M 2013 Astrophys. J. 762 13
[7] Heading J M A 1962 An Introduction to Phase-Integral Methods (London: Methuen)
[8] Fouvry J B, Pichon C and Prunet S 2015 arXiv:1504.04828 [astro-ph]
[9] Cumming A, Arras P and Zweibel E G 2004 Astrophys. J. 609 999
[10] Martin J and Schwarz D J 2003 Phys. Rev. D 67 083512
[11] Dariescu M A, Dariescu C and Buhucianu O 2011 Chin. Phys. Lett. 28 010303
[12] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)
[13] Gao Z F, Wang N, Peng Q H, Li X D and Du Y J 2013 Mod. Phys. Lett. A 28 1350138
[14] Rheinhardt M and Geppert U 2002 Phys. Rev. Lett. 88 101103
[15] Buhucianu O, Dariescu M A and Dariescu C 2012 Int. J. Theor. Phys. 51 526
[16] Reichel A V, Smolyansky S A, Prozorkevich A V, Tarakanov A V and Bastrukov S I 2003 The 17th International Workshop on High-Energy Physics and Quantum Field Theory (Samara Saratov, Russia 4–11 September 2003) p 368
Related articles from Frontiers Journals
[1] MARINA–AURA Dariescu, CIPRIAN Dariescu. Heun Functions Describing Fermions Evolving in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2015, 32(07): 101101
[2] ZHANG Xiu-Ming, SUN Jiu-Xun, YANG Li. Effect of the Minimal Length on the Thermodynamics of Ultra-Relativistic Ideal Fermi Gas[J]. Chin. Phys. Lett., 2014, 31(04): 101101
[3] BAO Ai-Dong, SUN Yi-Qian, WANG Dan. An Anomaly Associated with Ward–Takahashi Identity for Pseudo-Tensor Current in QED[J]. Chin. Phys. Lett., 2012, 29(12): 101101
[4] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 101101
[5] ZHANG Xiu-Ming, DUAN Yi-Shi. The Topological Structure of the SU(2) Chern-Simons Topological Current in the Four-Dimensional Quantum Hall Effect[J]. Chin. Phys. Lett., 2010, 27(7): 101101
[6] LIANG Wen-Feng, WU Ming, LIU Hui, CHEN Xiang-Song. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre--Gaussian Laser[J]. Chin. Phys. Lett., 2008, 25(12): 101101
[7] ZHONG Wo-Jun, DUAN Yi-Shi. Topological Quantization of Instantons in SU(2) Yang--Mills Theory[J]. Chin. Phys. Lett., 2008, 25(5): 101101
[8] ZET Gheorghe, MANTA Vasile, POPA Camelia. Gauge Model Based on Group G×SU(2)[J]. Chin. Phys. Lett., 2008, 25(2): 101101
[9] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 101101
[10] DUAN Yi-Shi, WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor[J]. Chin. Phys. Lett., 2006, 23(11): 101101
[11] ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole[J]. Chin. Phys. Lett., 2005, 22(10): 101101
[12] DUAN Yi-Shi, YANG Jie. The Topological Inner Structure of Chern--Simons Tensor Current and the World-Sheet of Strings[J]. Chin. Phys. Lett., 2005, 22(5): 101101
[13] DUAN Yi-Shi, REN Ji-Rong, YANG Jie. Cosmic Strings and Quintessence[J]. Chin. Phys. Lett., 2003, 20(12): 101101
[14] Integer and Half-Integer Quantization Conditions in Quantum Mechanics. Integer and Half-Integer Quantization Conditions in Quantum Mechanics[J]. Chin. Phys. Lett., 2001, 18(4): 101101
[15] ZHAO Shucheng. MASSIVE ABELIAN GAUGE FIELD THEORY AND INTERACTION BETWEEN BARYON CHARGES AND CURRENTS[J]. Chin. Phys. Lett., 1990, 7(3): 101101
Viewed
Full text


Abstract