CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Temperature-Dependent Drain Current Characteristics and Low Frequency Noises in Indium Zinc Oxide Thin Film Transistors |
LIU Yuan1**, WU Wei-Jing2, QIANG Lei3, WANG Lei2, EN Yun-Fei1, LI Bin3 |
1Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Produce Reliability and Environmental Testing Research Institute, Guangzhou 510610 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 3School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640
|
|
Cite this article: |
LIU Yuan, WU Wei-Jing, QIANG Lei et al 2015 Chin. Phys. Lett. 32 088506 |
|
|
Abstract The I–V characteristics and low frequency noises for indium zinc oxide thin film transistor are measured between 250 K and 430 K. The experimental results show that drain currents are thermally activated following the Meyer–Neldel rule, which can be explained by the multiple-trapping process. Moreover, the field effect electron mobility firstly increases, and then decreases with the increase of temperature, while the threshold voltage decreases with increasing the temperature. The activation energy and the density of localized gap states are extracted. A noticeable increase in the density of localized states is observed at the higher temperatures.
|
|
Received: 09 April 2015
Published: 02 September 2015
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
77.55.hf
|
(ZnO)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
|
|
|
[1] Takechi K, Nakata M, Eguchi T et al 2009 Jpn. J. Appl. Phys. 48 011301 [2] Chen C, Abe K, Humomi H et al 2009 IEEE Trans. Electron Devices 56 1177 [3] Godo H, Kawae D, Yoshitomi S et al 2010 Jpn. J. Appl. Phys. 49 03CB04 [4] Hoshino K and Wager J F et al 2010 IEEE Electron Device Lett. 31 818 [5] Jeong J, Lee G J, Kim J et al 2013 J. Appl. Phys. 114 094502 [6] Chen B Y, Wu W H and Chen J R 1995 J. Mater. Sci. 30 2254 [7] Takechi K, Nakata M, Eguchi T et al 2009 Jpn. J. Appl. Phys. 48 078001 [8] Kim S, Jeon Y, Lee J H et al 2010 IEEE Electron Device Lett. 31 1236 [9] Le Comber P G and Spear W E 1970 Phys. Rev. Lett. 25 509 [10] Martins R, Barquinha P, Ferreira I et al 2007 J. Appl. Phys. 101 044505 [11] Torricelli F, Meijboom J R, Smits E et al 2011 IEEE Trans. Electron Devices 58 2610 [12] Pichon L, Boukhenoufa A, Cordier C et al 2006 J. Appl. Phys. 100 054505 [13] Liu Y, Yao R H, Li B et al 2008 J. Disp. Technol. 4 180 [14] Pichon L, Cretu B and Boukhenoufa A 2009 Thin Solid Films 517 6367 [15] Liu Y, Wu W J, Li B et al 2014 Acta Phys. Sin. 63 098503 (in Chinese) [16] Chowdhury M D H, Migliorato P and Jang J 2011 Appl. Phys. Lett. 98 153511 [17] Kamiya T, Nomura K and Hosono H 2009 J. Disp. Technol. 5 462 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|