Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 088104    DOI: 10.1088/0256-307X/32/8/088104
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition
SHI Yan-Chao1, LI Jia-Jun1, LIU Hao1, ZUO Yong-Gang1, BAI Yang1, SUN Zhan-Feng2,3, MA Dian-Li2,3, CHEN Guang-Chao1,3**
1College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049
2KYKY Technology Co., Ltd., Beijing 100190
3Joint Laboratory of Electron Microscope Technology, Beijing 100049
Cite this article:   
SHI Yan-Chao, LI Jia-Jun, LIU Hao et al  2015 Chin. Phys. Lett. 32 088104
Download: PDF(1038KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Radio-frequency inductively coupled plasma jet is utilized to grow diamond films to combine the advantages of clean deposition environment and large deposition area. Before diamond growth, the simulation of deposition environment is studied to understand the flow field and the properties of the plasma. The optical emission spectra (OES) are also applied to diagnose the rf plasma. The plasma density ne and the electron temperature Te deduced from the data measured by OES are about 1.0×1014 l/cm3 and 1.4 eV, which are in good agreement with the data calculated in the simulation. Based on the data from both simulation and measurement, the optimized growth parameters are determined to grow diamond films. Nano-crystalline diamond with cauliflower-like morphology is obtained. The crystalline feature and impurity of as-grown films are also studied.
Received: 18 March 2015      Published: 02 September 2015
PACS:  81.05.uj (Diamond/nanocarbon composites)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  52.80.Pi (High-frequency and RF discharges)  
  47.11.Fg (Finite element methods)  
  47.15.Cb (Laminar boundary layers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/088104       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/088104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Yan-Chao
LI Jia-Jun
LIU Hao
ZUO Yong-Gang
BAI Yang
SUN Zhan-Feng
MA Dian-Li
CHEN Guang-Chao
[1] Novikov N V and Dub S N 1996 Diamond Relat. Mater. 5 1026
[2] Nebel C E 2003 Semicond. Sci. Technol. 18 S1-S11
[3] Philip J, Hess P, Feygelson T, Butler J E, Chattopadhyay S, Chen K H and Chen L C 2003 J. Appl. Phys. 93 2164
[4] Nebel C E, Rezek B, Shin D, Uetsuka H and Yang N 2007 J. Phys. D: Appl. Phys. 40 6443
[5] Balducci A, Marinelli M, Milani E, Morgada M E, Tucciarone A, Verona-Rinati G, Angelone M and Pillon M 2005 Appl. Phys. Lett. 86 213507
[6] Krauss A R, Auciello O, Gruen D M, Jayatissa A, Sumant A, Tucek J, Mancini D C, Moldovan N, Erdemir A, Ersoy D, Gardos M N, Busmann H G, Meyer E M and Ding M Q 2001 Diamond Relat. Mater. 10 1952
[7] Volpe P N, Pernot J, Muret P and Omnes F 2009 Appl. Phys. Lett. 94 092102
[8] Kamo M, Chawanya H, Tanaka T, Sato Y and Setaka N 1988 Mater. Sci. Eng. A 106 535
[9] Collins A T, Kamo M and Sato Y 1989 J. Phys.: Condens. Matter 1 4029
[10] Chen G C, Li B, Yan Z Q and Lu F X 2012 Diamond Relat. Mater. 21 83
[11] Zhang Y F, Zhang F, Gao Q J, Yu D P, Peng X F and Lin X D 2001 Chin. Phys. Lett. 18 286
[12] Zhang F, Zhang Y F, Gao Q J, Zhang S L, Lin T, Peng X F and Lin Z D 2000 Chin. Phys. Lett. 17 376
[13] Wang Q L, Lue X Y, Li L A, Cheng S H and Li H D 2010 Chin. Phys. Lett. 27 047802
[14] Li H D, Zou G T, Wang Q L, Cheng S H, Li B, Lue J N, Lue X Y and Jin Z S 2008 Chin. Phys. Lett. 25 1803
[15] Li B, Zhang Q J, Shi Y C, Li J J, Li H, Lu F X and Chen G C 2014 Chin. Phys. Lett. 31 088104
[16] Badzian A, Simonton B, Badzian T, Messier R, Spear K E and Roy R 1986 Infrared Opt. Transmitting Mater. (San Diego 1 August 1986) p 127
[17] Yan C S, Vohra Y K, Mao H K and Hemley R J 2002 Proc. Natl. Acad. Sci. USA 99 12523
[18] Yamada H, Chayahara A, Mokuno Y, Kato Y and Shikata S 2014 Appl. Phys. Lett. 104 102110
[19] Ohtake N and Yoshikawa M 1990 J. Electrochem. Soc. 137 717
[20] Cappelli M A, Owano T G and Kruger C H 1990 J. Mater. Res. 5 2326
[21] Fauchais P and Vardelle A 1997 IEEE Trans. Plasma Sci. 25 1258
[22] Kohzaki M, Uchida K, Higuchi K and Noda S 1993 Jpn. J. Appl. Phys. II 32 L438
[23] Sun Y and Rogers J A 2007 Adv. Mater. 19 1897
[24] Qian M, Ren C, Wang D, Zhang J and Wei G 2010 J. Appl. Phys. 107 063303
[25] Zhou Q, Cheng C and Meng Y 2009 Plasma Sci. Technol. 11 560
[26] Derkaoui N, Rond C, Gries T, Henrion G and Gicquel A 2014 J. Phys. D: Appl. Phys. 47 205201
[27] Chen G C, Li B, Li H, Lan H, Dai F W, Xue Q J, Han X Q, Hei L F, Song J H, Li C M, Tang W Z and Lu F X 2010 Diamond Relat. Mater. 19 1078
[28] Li C, Huang L, Snigdha G P, Yu Y and Cao L 2012 ACS Nano 6 8868
[29] Bhaviripudi S, Jia X, Dresselhaus M S and Kong J 2010 Nano Lett. 10 4128
[30] Sismanoglu B N, Grigorov K G, Caetano R, Rezende M V O and Hoyer Y D 2010 Eur. Phys. J. D 60 505
Related articles from Frontiers Journals
[1] Jun-Song Liu, Hang Li, Bo-Wen Sun, Zhan-Hui Ding, Qi-Liang Wang, Shao-Heng Cheng, Hong-Dong Li. Boron-Doped Diamond-Film-Based Two-Dimensional Electrode of Electrophoresis Tank[J]. Chin. Phys. Lett., 2016, 33(11): 088104
[2] Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan, Shang-Sheng Li, Ying Wang, Xiao-Peng Jia, Hong-An Ma. B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2016, 33(02): 088104
[3] LI Bin, ZHANG Qin-Jian, SHI Yan-Chao, LI Jia-Jun, LI Hong, LU Fan-Xiu, CHEN Guang-Chao. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method[J]. Chin. Phys. Lett., 2014, 31(08): 088104
Viewed
Full text


Abstract