CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Properties of Liquid Nickel along Melting Lines under High Pressure |
CAO Qi-Long1**, WANG Pan-Pan2, HUANG Duo-Hui1, YANG Jun-Sheng1, WAN Ming-Jie1, WANG Fan-Hou1 |
1Key Laboratory of Computational Physics, Yibin University, Yibin 644007 2Management Centre for Experimental and Teaching Resource, Yibin University, Yibin 644007
|
|
Cite this article: |
CAO Qi-Long, WANG Pan-Pan, HUANG Duo-Hui et al 2015 Chin. Phys. Lett. 32 086201 |
|
|
Abstract We report a molecular dynamics study of structural and transport properties of liquid nickel under high pressures. Pressure dependencies of pair distribution function and pair correlation entropy along the melting line indicate that the configuration change along melting lines decreases with increasing pressure. The calculated diffusion coefficients and viscosity by using entropy-scaling laws with modified parameters and ideal parameters are compared with those extracted from mean-square displacement or the Stokes–Einstein relation. The results suggest that the entropy-scaling laws hold well for liquid nickel under high-pressure conditions, and the diffusion coefficients and viscosity increase moderately with pressure along melting lines.
|
|
Received: 17 December 2014
Published: 02 September 2015
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
65.40.gd
|
(Entropy)
|
|
66.20.-d
|
(Viscosity of liquids; diffusive momentum transport)
|
|
|
|
|
[1] Jeanloz R 1990 Annu. Rev. Earth Planet. Sci. 18 357 [2] Dubrovinsky L et al 2007 Science 316 1880 [3] Inoue A 2000 Acta Mater. 48 279 [4] Bharathi K K, Vemuri R S and Ramana C V 2011 Chem. Phys. Lett. 504 202 [5] Jakse N and Pasturel A 2004 J. Chem. Phys. 120 6124 [6] Jakse N, Wax J F and Pasturel A 2007 J. Chem. Phys. 126 234508 [7] Kim T H and Kelton K F 2007 J. Chem. Phys. 126 054513 [8] Brandes E A and Brook G B 1992 Smithells Metals Reference Book 7th edn (Oxford: Butterworth-Heinemann) [9] Chathoth S M, Meyer A, Koza M M and Juranyi F 2004 Appl. Phys. Lett. 85 4881 [10] Japel S, Schwager B, Boehler R and Ross M 2005 Phys. Rev. Lett. 95 167801 [11] Ross M, Boehler R and Errandonea D 2007 Phys. Rev. B 76 184117 [12] Pozzo M and Alfè D 2013 Phys. Rev. B 88 024111 [13] Errandonea D 2013 Phys. Rev. B 87 054108 [14] Ko?i L, Bringa E M, Ivanov D S, Hawreliak J, McNaney J, Higginbotham A, Zhigilei L V, Belonoshko A B, Remington B A and Ahuja R 2006 Phys. Rev. B 74 012101 [15] Luo F, Chen X R, Cai L C and Ji G F 2010 J. Chem. Eng. Data 55 5149 [16] Urlin V D 1966 Sov. Phys. JETP 22 341 [17] Cao Q L, Wang P P, Huang D H, Yang J S, Wan M J and Wang F H 2014 J. Chem. Phys. 140 114505 [18] Cao Q L, Huang D H, Yang J S, Wan M J and Wang F H 2014 Chin. Phys. Lett. 31 066202 [19] Alfè D 2003 Phys. Rev. B 68 064423 [20] Plimpton S 1995 J. Comput. Phys. 117 1 [21] Chakraborty S N and Chakravarty C 2007 Phys. Rev. E 76 011201 [22] Yokoyama I 1998 Physica B 254 172 [23] Cao Q L, Wang W L, Li Y D and Liu C S 2011 J. Chem. Phys. 134 044508 [24] Rosenfeld Y 1977 Phys. Rev. A 15 2545 [25] Rosenfeld Y 1999 J. Phys.: Condens. Matter 11 5415 [26] Hoyt J J, Asta M and Sadigh B 2000 Phys. Rev. Lett. 85 594 [27] Li G X, Liu C S and Zhu Z G 2005 Phys. Rev. B 71 094209 [28] Cao Q L, Kong X S, Li Y D, Wu X B and Liu C S 2011 Physica B 406 3114 [29] Dobson D P 2002 Phys. Earth Planet. Interiors 130 271 [30] Alfè D, Kresse G and Gillan M J 2000 Phys. Rev. B 61 132 [31] Dai J Y, Hou Y, Kang D D, Sun H Y, Wu J H and Yuan J M 2013 New J. Phys. 15 045003 [32] Shen G, Prakapenka V B, Rivers M L and Sutton S R 2004 Phys. Rev. Lett. 92 185701 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|