Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 085201    DOI: 10.1088/0256-307X/32/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Diagnostics of Metal Plasma in Radio Frequency Glow Discharge during Electron Beam Evaporation
YU Yong-Hao1**, WANG Lang-Ping2**, WANG Xiao-Feng2, JIANG Wei2, CHEN Qiong2
1Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001
2State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001
Cite this article:   
YU Yong-Hao, WANG Lang-Ping, WANG Xiao-Feng et al  2015 Chin. Phys. Lett. 32 085201
Download: PDF(648KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new method for generating metal plasma via radio frequency (rf) glow discharge during electron beam evaporation is proposed. A probe array and an emission spectrometric analysis are employed to identify the metal plasma during rf glow discharge. Spectral results reveal that the Ti metal vapor is ionized and forms a metal plasma via rf glow discharge. The dependence of the emission intensities of Ti+ and Ti atoms on rf glow discharge parameters is investigated. The results show that, as rf power increases, the emission intensities of Ti+ are enhanced while the emission intensities of Ti atoms are suppressed due to a constant Ti atom flux and an increasing Ti+ flux. Furthermore, the emission intensities of Ti+ and Ti atoms increase with the electron-beam current. The influence of rf glow discharge parameters on the ion-beam current density is also studied. The results show that the ion-beam current density rises with increasing the rf power and the electron-beam current. The ion-beam current density at 4-cm radial distance doubles from 8×109/cm3 up to 1.7×1010/cm3 with increasing the rf power from 90 to 240 W and it increases almost five-fold in the electron-beam current range of 170–230 mA at 10-cm radial distance. Additionally, the increasing ratio of the ion-beam current density at the large radial distance is greater than that in the central region resulting from the driving force which is brought about by a pressure difference and the discharging action.
Received: 02 April 2015      Published: 02 September 2015
PACS:  52.25.Jm (Ionization of plasmas)  
  52.80.Pi (High-frequency and RF discharges)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.70.Gw (Radio-frequency and microwave measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/085201       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Yong-Hao
WANG Lang-Ping
WANG Xiao-Feng
JIANG Wei
CHEN Qiong
[1] Li W L, Jia R, Liu M, Chen C, Xie C Q, Zhu C X, Li H F, Zhang P W and Ye T C 2009 Chin. Phys. Lett. 26 046801
[2] Wang D W, Kong Y F, Yang Y and Jin W F 2002 Chin. J. Lasers 29 735
[3] Hsu S, Yang T S and Chen T K 2007 Thin Solid Films 515 3521
[4] Mansilla C 2009 Solid State Sci. 11 1456
[5] Mansilla C 2008 J. Phys. D: Appl. Phys. 41 102
[6] Yang C, Fan H Q and Xi Y X 2008 Appl. Surf. Sci. 254 2685
[7] ?ztarhan A, Brown I, Bakkaloglu C, Watt G, Evans P, Oks E, Nikolaev A and Tek Z 2005 Surf. Coat. Technol. 196 327
[8] Wei R H, Booker T, Rincon T and Arps J 2005 Surf. Coat. Technol. 200 579
[9] Matossian J, Wei R H, Vajo J, Hunt G, Gardos M, Chambers G, Soucy L, Oliver D, Jay L, Taylor C M, Alderson G, Komanduri R and Perry A 1998 Surf. Coat. Technol. 108 496
[10] Modes T, Scheffel B, Metzner C, Zywitzki O and Reinhold E 2005 Surf. Coat. Technol. 200 306
Related articles from Frontiers Journals
[1] Yan-Liang Ji, Ben-Mou Zhou, Ya-Dong Huang. Mechanism of Electromagnetic Flow Control Enhanced by Electro-Discharge in Water[J]. Chin. Phys. Lett., 2018, 35(5): 085201
[2] Xin-Feng Sun, Yan-Hui Jia, Tian-Ping Zhang, Chen-Chen Wu, Xiao-Dong Wen, Ning Guo, Hai Jin, Yu-Jun Ke, Wei-Long Guo. Effects of Three Typical Resistivity Models on Pulsed Inductive Plasma Acceleration Modeling[J]. Chin. Phys. Lett., 2017, 34(12): 085201
[3] Zhong-Zhen Wu, Shu Xiao, Sui-Han Cui, Ricky K. Y. Fu, Xiu-Bo Tian, Paul K. Chu, Feng Pan. Origin of Initial Current Peak in High Power Impulse Magnetron Sputtering and Verification by Non-Sputtering Discharge[J]. Chin. Phys. Lett., 2016, 33(07): 085201
[4] M. K. Mishra, A. Phukan, M. Chakraborty. Influence of Discharge Voltage on Charged Particles in a Multi-Dipole Device in the Presence of an Ion Collecting Surface[J]. Chin. Phys. Lett., 2013, 30(1): 085201
[5] WU Tao, WANG Xin-Bing** . Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass[J]. Chin. Phys. Lett., 2011, 28(5): 085201
[6] YANG Qian-Suo, LIU Chun, PENG Zhi-Min, ZHU Nai-Yi. Laser-Induced Particle Jet and Its Ignition Application in Premixed Combustible Gases[J]. Chin. Phys. Lett., 2009, 26(6): 085201
[7] LI Yong-Qiang, WU Jian-Hua, YUAN Jian-Min. Ionization Energies of Ions in Hot and Dense Plasma: Beryllium-Like Ions for Z=26-36[J]. Chin. Phys. Lett., 2008, 25(10): 085201
[8] SUN Yun-Jin, FU Ya-Bo, CHEN Qiang, ZHANG Chun-Mei, SANG Li-Jun, ZHANG Yue-Fei. Silicon Dioxide Coating Deposited by PDPs on PET Films and Influence on Oxygen Transmission Rate[J]. Chin. Phys. Lett., 2008, 25(5): 085201
[9] M. K. Mishra, A. Phukan. Effect of Discharge Voltage on an Ion Sheath Formed at a Grid in a Multi-Dipole Discharge Plasma[J]. Chin. Phys. Lett., 2008, 25(3): 085201
[10] XIA Sheng-Guo, HE Jun-Jia, LIU Ke-Fu. Power Consideration for Pulsed Discharges in Potassium Seeded Argon[J]. Chin. Phys. Lett., 2007, 24(6): 085201
[11] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 085201
[12] LIU Hong-Jie, GU Yu-Qiu, ZHENG Zhi-Jian, JIAO Chun-Ye, NAM Sung-Mo, HAN Zai-Min, WANG Xiang-Xian, HE Ying-Ling, WEN Tian-Shu, ZHANG Shuang-Gen, WEN Xian-Lun, ZHOU Kai-Nan, WANG Xiao-Dong, HUANG Xiao-Jun, HUA Jian-Fei. Relativistic Electron Acceleration in a Wake Field Generated by the Intense Femtosecond Laser Interaction with a Mixture Jet of Deuterium Clusters and Molecules[J]. Chin. Phys. Lett., 2006, 23(6): 085201
[13] D. Akbar, S. Bilikmen. Non-Uniform Axial Electric Field in Argon Glow Discharge Plasma[J]. Chin. Phys. Lett., 2006, 23(5): 085201
[14] LIU Hong-Jie, GU Yu-Qiu, WANG Hong-Bin, ZHENG Zhi-Jian, GE Fang-Fang, WEN Xian-Lun, JIAO Chun-Ye, HE Ying-Ling, WEN Tian-Shu, HUANG Wen-Zhong, WANG Guang-Chang, ZHOU Wei-Min, ZHANG Shuang-Gen, WANG Xiang-Xian, ZHOU Kai-Nan, WANG Xiao-Dong, HUANG Xiao-Jun, NI Guo-Quan. High-Energy Ion Emission from Cooled Deuterium Clusters in 20TW Laser Fields[J]. Chin. Phys. Lett., 2005, 22(5): 085201
[15] WANG Fei-Lu, ZHAO Gang, YUAN Jian-Min,. Opacity of Hot and Dense Stellar Material: Flexible for Changes in Composition and Abundance[J]. Chin. Phys. Lett., 2003, 20(12): 085201
Viewed
Full text


Abstract