FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Study on a Passively Q-Switched Ho:YLF Laser with Polycrystalline Cr2+:ZnS as a Saturable Absorber |
CUI Zheng1, YAO Bao-Quan1**, DUAN Xiao-Ming1, LI Jiang2**, BAI Shuang1, LI Xiao-Lei1, ZHANG Ye1, YUAN Jin-He1, DAI Tong-Yu1, JU You-Lun1, LI Chao-Yu2, PAN Yu-Bai2 |
1National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 2Key Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
|
|
Cite this article: |
CUI Zheng, YAO Bao-Quan, DUAN Xiao-Ming et al 2015 Chin. Phys. Lett. 32 084205 |
|
|
Abstract Output performance of a continuous-wave Tm:YAP laser pumped passively Q-switched Ho:YLF laser is demonstrated with a polycrystalline Cr2+:ZnS as the saturable absorber. We compare the experimental results at the three different distances L of the polycrystalline Cr2+:ZnS saturable absorber to the output coupler. The pulse width almost remains constant for different L, when the incident pump power is changed in the range of 7.9–27.1 W. The shortest pulse duration of 33.3 ns for L=105 mm and the highest average output power of 6.8 W for L=5 mm are obtained at the incident pump power of 27.1 W. The output wavelength of the passively Q-switched laser shifts to 2045.2 nm from 2064.7 nm in the cw operation. The beam quality factor of M2 is 1.2.
|
|
Received: 27 May 2015
Published: 02 September 2015
|
|
PACS: |
42.60.Gd
|
(Q-switching)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
|
|
|
[1] Carrig T J 2004 Proc. SPIE 5620 187 [2] Yang J, Tang Y and Xu J 2013 Photon. Res. 1 52 [3] Gower M C 2000 Opt. Express 7 56 [4] Budni P A, Knights M G and Chicklis E P 1993 Opt. Lett. 18 1068 [5] Faoro R, Kadankov M, Parisi D, Veronesi S, Tonelli M, Petrov V, Griebner U, Segura M and Mateos X 2012 Opt. Lett. 37 1517 [6] Cui Z, Yao B Q, Duan X M, Du Y Q, Xu S and Wang Y Z 2014 Opt. Eng. 53 126112 [7] Du Y Q, Yao B Q, Cui Z, Duan X M, Dai T Y, Ju Y L, Pan Y B, Chen M and Shen Z C 2014 Chin. Phys. Lett. 31 064209 [8] Bowman S R and Feldman B J 1992 Proc. SPIE. 1627 46 [9] Shen Y J, Yao B Q, Duan X M, Zhu L G, Wang W, Ju Y L and Wang Y Z 2012 Opt. Lett. 37 3558 [10] Schellhorn M 2011 Appl. Phys. B 103 777 [11] Walsh B M, Barnes N P, Petros M, Yu J and Singh U N 2004 J. Appl. Phys. 95 3255 [12] Petros M, Yu J, Singh U N and Barnes N P 2000 Advanced Solid State Lasers OSA Trends Opt. Photon. 34 178 [13] Dergachev A, Armstrong D, Smith A, Drake T and Dubois M 2007 Opt. Express 15 14404 [14] Koen W, Bollig C, Strauss H, Schellhorn M, Jacob C and Esser M J D 2010 Appl. Phys. B 99 101 [15] Dergachev A 2011 Opt. Express 19 6797 [16] Mirov S, Fedorov V, Moskalev I, Martyshkin D and Kim C 2010 Laser Photon. Rev. 4 21 [17] Zhang X L, Li L, Cuia J H and Ju Y L 2011 Laser Phys. 21 1581 [18] Zhang X L, Bao X J, Li L, Li H and Cui J H 2012 Opt. Commun. 285 2122 [19] Shu S J, Yu T, Hou J Y, Liu R T, Huang M J and Chen W B 2011 Chin. Opt. Lett. 9 021401 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|