FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Optimization of 1.3-μm InGaAsP/InP Electro-Absorption Modulator |
WANG Hui-Tao, ZHOU Dai-Bing, ZHANG Rui-Kang, LU Dan, ZHAO Ling-Juan, ZHU Hong-Liang, WANG Wei, JI Chen** |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
WANG Hui-Tao, ZHOU Dai-Bing, ZHANG Rui-Kang et al 2015 Chin. Phys. Lett. 32 084203 |
|
|
Abstract We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is systematically analyzed through the finite element method. An optimized structure of the 1.3-μm InGaAsP/InP QW EAM is proposed for applications in 100 G ethernet. Then 1.3-μm InGaAsP/InP EAMs with f?3 dB bandwidth of over 20 GHz and extinction ratio over 20 dB at 3 V bias voltage are demonstrated.
|
|
Received: 03 April 2015
Published: 02 September 2015
|
|
PACS: |
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
81.07.St
|
(Quantum wells)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
|
|
|
[1] Franz W 1958 Z. Für Naturforsch. A 13 484 [2] keldysh L V 1958 Soviet Phys. JEPT 34 788 [3] Tharmalingam K 1963 Phys. Rev. 130 2204 [4] Elliot R J 1957 Phys. Rev. 108 1384 [5] Dow J D and Redfield D 1970 Phys. Rev. B 1 3358 [6] Dimmock J O 1967 Semicond. SemiMet. (New York: Academic Press) 3 p 259 [7] Liu G L, Wang W, Zhang J Y, Wang X J, Chen W X and Zhu H L 2000 LEOS 13th Annual Meeting (Rio Grande, Brazil 13–16 Nov 2000) p 504 [8] Kawamura Y, Wakita K, Itaya Y, Yoshikuni Y and Asahi H 1986 Electron. Lett. 22 242 [9] Zhao L J, Pan J Q, Zhu H L, Zhou F, Wang B J, Wang W and Liu H B 2008 Chin. Phys. Lett. 25 3670 [10] http://www.ieee802.org/3/ba [11] Wood T H, Burrus C A, Miller D A B, Chemla D S, Damen T C, Gossard A C and Wiegmann W 1984 Appl. Phys. Lett. 44 16 [12] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus A 1984 Phys. Rev. Lett. 53 2173 [13] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus A 1985 Phys. Rev. B 32 1043 [14] Miller D A B, Weiner J S and Chemla D S 1986 Quantum Electron 22 1816 [15] Matsuura M and Kamizato T 1986 Phys. Rev. B 33 8385 [16] Wood T H 1988 J. Lightwave Technol. 6 743 [17] Schmitt-Rink S, Chemla D S and Miller D A B 1989 Adv. Phys. 38 89 [18] Chuang S L, Schmitt-Rink S, Miller D A B and Chemla D S 1991 Phys. Rev. B 43 1500 [19] Wang Y, Pan J Q, Zhao L J, Zhu H L and Wang W 2010 Chin. Phys. B 19 124215 [20] Shao Y B, Zhao L J, Yu H Y, Qiu J F, Qiu Y P, Pan J Q, Wang B J, Zhu H L and Wang W 2011 Chin. Phys. Lett. 28 114207 [21] Zucker J E, Bar-Joseph I, Miller B I, Koren U and Chemla D S 1989 Appl. Phys. Lett. 54 10 [22] Mee K Chin and William S C C 1993 J. Quantum Electron. 29 9 [23] Takahashi H, Shimamura T, Sugiyama T, Kubota M and Nakamura K 2009 IEEE Photon. Technol. Lett. 21 633 [24] Takahata K, Sanjoh H, Iga R, Fujisawa T, Ishii H, Ohki A and Kanazawa S 2014 Electron. Lett. 50 533 [25] Fujisawa T, Kanazawa S, Takahata K, Kobayashi W, Tadokoro T, Iga R and Ishii H 2012 Opto-Electron. Commun. Conf. 1 p75 [26] Fujisawa T, Itoh T, Kanazawa S, Takahata K, Ueda Y, Iga R, Sanjo H, Yamanaka T, Kotoku M and Ishii H 2013 Opt. Express 21 182 [27] Kanazawa S, Fujisawa T, Nunoya N, Ohki A, Takahata K, Sanjoh H, Iga R and Ishii H 2013 J. Lightwave Technol. 31 602 [28] Kanazawa S, Fujisawa T, Nunoya N, Ohki A, Takahata K, Sanjoh H, Iga R and Ishii H 2012 Opt. Fiber Commun. Conf. PDP5B.8 [29] PICS3D by Crosslight Software (2011) [30] Chuang S L 2009 Phys. Photon. Devices (Hoboken: John Wiley & Sons. Inc.) p 683 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|