Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080701    DOI: 10.1088/0256-307X/32/8/080701
GENERAL |
The Improved Design of Multi-channel Thin Gap Chamber Simulation Signal Source for the ATLAS Detector Upgrade
HU Kun1,2**, LU Hou-Bing1,2,3, WANG Xu1,2, LI Feng1,2, HAN Liang1,2, JIN Ge1,2
1State Key Laboratory of Particle Detection & Electronics, University of Science and Technology of China, Hefei 230026
2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
3Hefei Electronic Engineering Institute, Hefei 230037
Cite this article:   
HU Kun, LU Hou-Bing, WANG Xu et al  2015 Chin. Phys. Lett. 32 080701
Download: PDF(1084KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.
Received: 27 March 2015      Published: 02 September 2015
PACS:  07.05.Hd (Data acquisition: hardware and software)  
  29.40.Gx (Tracking and position-sensitive detectors)  
  07.77.-n (Atomic, molecular, and charged-particle sources and detectors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080701       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Kun
LU Hou-Bing
WANG Xu
LI Feng
HAN Liang
JIN Ge
[1] Aad G, Abbott B, Abdallah J et al (Atlas collaboration) 1997 CEAN/LHCC/97
[2] ATLAS Collaboration 2008 JINST 3 S08003
[3] Yonathan M (Atlas collaboration) 2013 Proceedings of the 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and Their Applications (ANIMMA) p 1
[4] Dong J, Hu B T, Chen Y B and Xie Y G 2009 Chin. Phys. B 18 4229
[5] Yan Q R, Zhao B S, Yang H et al 2010 Acta Phys. Sin. 59 6164 (in Chinese)
[6] Smakhtin V, Mikenberg G, Klier A et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 196
[7] Amram N, Bella G, Benhammou Y et al 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 628 177
[8] Ochi A, Kiyamura H et al 2006 Rev. Sci. Instrum. 77 10E707
[9] Gianluigi D G, Jack F, Jessica M et al 2013 IEEE Trans. Nucl. Sci. 60 2314
[10] Hu K, Lu H, Wang X et al 2015 Rev. Sci. Instrum. 86 016116
[11] http://www.samtec.com/ftppub/pdf/gfz.pdf
[12] Jennewein T, Achleitner U, Weihs G et al 2000 Rev. Sci. Instrum. 71 1675
[13] Jian Y, Ren M, Wu E et al 2011 Rev. Sci. Instrum. 82 073109
[14] England D G, Bustard P J, Moffatt D J et al 2014 Appl. Phys. Lett. 104 051117
[15] Sunar B, Martin W J and Stinson D R 2007 IEEE Trans. Comput. 56 109
[16] Wold K and Tan C H 2008 Proc. Int. Conf. Reconfigurable Computing FPGAs p 385
[17] Jessa M and Matuszewski L 2011 Proc. Int. Conf. Reconfigurable Computing FPGAs p 274
[18] Wold K and Petrovic S 2012 Proceedings of IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and System p 145
[19] Loza S and Matuszewski L 2014 Proc. Int. Conf. Signals Electron. Syst. (ICSES) p 1
[20] Wang G Y, Bao X L and Wang Z L 2008 Chin. Phys. B 17 3596
[21] Liu Q, Fang J Q, Zhao G and Li Y 2012 Acta Phys. Sin. 61 130508 (in Chinese)
[22] Davies R 2002 http://www.robertnz.net/pdf/xor2.pdf
[23] Vasilescu G 2005 Electronic Noise and Interfering Signals (Berlin: Spring-Verlag)
Related articles from Frontiers Journals
[1] HU Kun, LI Feng, CHEN Lian, LIANG Fu-Tian, JIN Ge. An FPGA-Based Pulse Pile-up Rejection Technique for Photon Counting Imaging Detectors[J]. Chin. Phys. Lett., 2015, 32(03): 080701
Viewed
Full text


Abstract