Chin. Phys. Lett.  2015, Vol. 32 Issue (08): 080401    DOI: 10.1088/0256-307X/32/8/080401
GENERAL |
Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit
ZHANG Ruan-Jing, CHEN Ju-Hua**, GAN Qiao-Shan, WANG Yong-Jiu
College of Physics and Information Science, Hunan Normal University, Changsha 410081
Cite this article:   
ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan et al  2015 Chin. Phys. Lett. 32 080401
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the geodesic motion in Schwarzschild spacetime with the weak-field limit. We investigate all geodesic types of the test particle by solving the geodesic equation and analyzing the behavior of effective potential. At the same time, all kinds of orbits, which are allowed according to the energy level corresponding to the effective potential, are numerically simulated in detail. Then we discuss the effect of different parameters on the effective potential energy. We also find that the test particle falls rapidly along the fall-into orbit and the radius of stable (unstable) circular orbits become larger in the Schwarzschild spacetime with the weak-field limit than those in the Schwarzschild case.
Received: 17 May 2015      Published: 02 September 2015
PACS:  04.70.-s (Physics of black holes)  
  04.40.-b (Self-gravitating systems; continuous media and classical fields in curved spacetime)  
  04.50.Gh (Higher-dimensional black holes, black strings, and related objects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/8/080401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I08/080401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ruan-Jing
CHEN Ju-Hua
GAN Qiao-Shan
WANG Yong-Jiu
[1] Hagihara Y 1931 Jpn. J. Astron. Geophys. 8 67
[2] Hackmann E and L?mmerzahl C 2008 Phys. Rev. D 78 024035
[3] Hackmann E and L?mmerzahl C 2008 Phys. Rev. Lett. 100 171101
[4] Zahrani A M A, Frolov V P and Shoom A A 2013 Phys. Rev. D 87 084043
[5] Chen J H and Wang Y J 2008 Chin. Phys. B 17 1184
[6] Chen J H and Wang J 2010 Int. J. Mod. Phys. A 25 1439
[7] Huang Q H et al 2015 Int. J. Theor. Phys. 54 459
[8] Zhou S et al 2012 Int. J. Mod. Phys. D 21 1250077
[9] Zhou S et al 2015 Int. J. Theor. Phys. (in print)
[10] Tursunov A et al 2013 Phys. Rev. D 88 124001
[11] Grunau S and Khamesra B 2013 Phys. Rev. D 87 124019
[12] Diemer V Kunz J L?mmerzahl C and Reimers S 2014 Phys. Rev. D 89 124026
[13] Brans C and Dicke R H 1961 Phys. Rev. 124 925
[14] Buchdahl H A 1970 Mon. Not. R. Astron. Soc. 150 1
[15] Dvali G et al 2000 Phys. Lett. B 485 208
[16] Bekenstein J D 2004 Phys. Rev. D 70 083509
[17] Ferraro R and Fiorini F 2008 Phys. Rev. D 78 124019
[18] Maartens R and Koyama K 2010 Living Rev. Relativ. 13 5
[19] Riess A G 1998 Astron. J. 116 1009
[20] Perlmutter S et al [Supernova Cosmology Project Collaboration] 1999 Astrophys. J. 517 565
[21] Cardone V F et al 2012 Phys. Rev. D 85 124007
[22] Tamanini N and B?hmer C G 2012 Phys. Rev. D 86 044009
[23] Amir M J and Yussouf M 2015 arXiv:1502.00777v1
[24] Zubair M and Waheed S 2015 arXiv:1502.03002v1
[25] Capozziello S et al 2015 arXiv:1503.02832v1
[26] Ruggiero M L and Radicella N 2015 arXiv:1501.02198v1
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 080401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 080401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 080401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 080401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 080401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 080401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 080401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 080401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 080401
[10] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 080401
[11] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 080401
[12] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 080401
[13] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 080401
[14] CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing. PV Criticality of an AdS Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2013, 30(6): 080401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 080401
Viewed
Full text


Abstract