Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 034205    DOI: 10.1088/0256-307X/32/3/034205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array
WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan**
Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
WANG Ya-Lan, CHENG Zi-Qiang, MA Liang et al  2015 Chin. Phys. Lett. 32 034205
Download: PDF(745KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer-by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts significantly to the longer wavelengths as the excitation power increases, especially when the longitudinal surface plasmon resonance of the Ag nanorod array cavity is adjusted to be close to the emission wavelength. The equivalent gain varies with the coating layer of CdSe/ZnS semiconductor quantum dots and the excitation power is also studied to explain this interesting spectrum-shifting effect. These findings could find applications in the dynamic information processing of active plasmonic and photonic nanodevices.
Published: 26 February 2015
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  78.40.Fy (Semiconductors)  
  52.25.Tx (Emission, absorption, and scattering of particles)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/034205       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/034205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Ya-Lan
CHENG Zi-Qiang
MA Liang
PENG Xiao-Niu
HAO Zhong-Hua
WANG Qu-Quan
[1] Mertens H et al 2006 Nano Lett. 6 2622
[2] Mühlschlegel P et al 2005 Science 308 1607
[3] Dong Z C et al 2010 Nat. Photon. 4 50
[4] Li X Y et al 2008 Chin. Phys. Lett. 25 2140
[5] Taminiau T H et al 2007 Nano Lett. 7 28
[6] Tam F et al 2007 Nano Lett. 7 496
[7] Wang Q Q et al 2007 Nano Lett. 7 723
[8] Zhang X A et al 2003 Chin. Phys. Lett. 20 1372
[9] Amjad R J et al 2013 Chin. Phys. Lett. 30 027301
[10] Xu H X et al 1999 Phys. Rev. Lett. 83 4357
[11] Kühn S et al 2006 Phys. Rev. Lett. 97 017402
[12] Kinkhabwala A et al 2009 Nat. Photon. 3 654
[13] Andrew P and Barnes W L 2004 Science 306 1002
[14] Feng J et al 2008 Appl. Phys. Lett. 93 051106
[15] Zhou Z K et al 2010 ACS Nano 4 5003
[16] Govorov A O et al 2007 Phys. Rev. B 76 125308
[17] Durach M et al 2008 New J. Phys. 10 105011
[18] Su X R et al 2010 Appl. Phys. Lett. 96 043106
[19] Fofang N T et al 2008 Nano Lett. 8 3481
[20] Wurtz G A et al 2007 Nano Lett. 7 1297
[21] Zhang W et al 2006 Phys. Rev. Lett. 97 146804
[22] Ni W H et al 2010 Nano Lett. 10 77
[23] Artuso R D and Bryant G W 2008 Nano Lett. 8 2106
[24] Cade N I et al 2009 Phys. Rev. B 79 241404(R)
[25] Empedocles S A and Bawendi M G 1997 Science 278 2114
[26] Flatté M E et al 2008 Proc. Natl. Acad. Sci. USA 105 18212
[27] Joffre M et al 1989 Phys. Rev. Lett. 62 74
[28] Muller A et al 2009 Phys. Rev. Lett. 103 217402
[29] Xu X D et al 2008 Phys. Rev. Lett. 101 227401
[30] Sieh C et al 1999 Phys. Rev. Lett. 82 3112
[31] Je K C et al 2006 Opt. Express 14 7994
[32] Wen G W et al 1995 Phys. Rev. B 52 5913
[33] Unold T et al 2004 Phys. Rev. Lett. 92 157401
[34] Sussman B J et al 2006 Phys. Rev. A 73 053403
[35] Nakaoka T et al 2006 Phys. Rev. B 73 121305(R)
[36] Brick P et al 2001 Phys. Rev. B 64 075323
[37] Dove T et al 2001 Chem. Phys. 267 115
[38] Gupta J A and Awschalom D D 2001 Phys. Rev. B 63 085303
[39] Gurioli M et al 2001 Appl. Phys. Lett. 78 931
[40] Ringler M et al 2008 Phys. Rev. Lett. 100 203002
[41] Dadosh T et al 2009 ACS Nano 3 1988
[42] Sadeghi S M and Nejat A 2011 J. Phys. Chem. C 115 21584
[43] Sadeghi S M et al 2012 J. Appl. Phys. 112 104302
[44] Sadeghi S M and Nejat A 2013 Plasmonics 8 425
[45] Sadeghi S M et al 2014 J. Phys. D: Appl. Phys. 47 165302
[46] Soganci I M et al 2007 Opt. Express 15 14289
[47] Crooker S A et al 2002 Phys. Rev. Lett. 89 186802
[48] Walker G W et al 2003 Appl. Phys. Lett. 83 3555
[49] Nan F et al 2014 Sci. Rep. 4 4839
[50] Peng X N et al 2011 Opt. Express 19 24804
[51] Sander M S and Tan L S 2003 Adv. Funct. Mater. 13 393
[52] Wang Y L et al 2014 J. Phys. Chem. C 118 16060
Related articles from Frontiers Journals
[1] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 034205
[2] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 034205
[3] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 034205
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 034205
[5] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 034205
[6] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 034205
[7] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 034205
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 034205
[9] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 034205
[10] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 034205
[11] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 034205
[12] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 034205
[13] Mu-Tian Cheng, Gen-Long Ye, Wei-Wei Zong, Xiao-San Ma. Single Photon Scattering in a Pair of Waveguides Coupled by a Whispering-Gallery Resonator Interacting with a Semiconductor Quantum Dot[J]. Chin. Phys. Lett., 2016, 33(02): 034205
[14] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 034205
[15] YANG Xu-Dong, LI Chuan-Liang, CHEN Feng-Hua. Polarization Rotation via Asymmetric Optical Pumping[J]. Chin. Phys. Lett., 2014, 31(11): 034205
Viewed
Full text


Abstract