Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 027401    DOI: 10.1088/0256-307X/32/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder
XU Min1, WANG Li-Min2, PENG Rui1,7, GE Qing-Qin1, CHEN Fei1, YE Zi-Rong1, ZHANG Yan1, CHEN Su-Di1, XIA Miao1, LIU Rong-Hua3, Arita M.4, Shimada K.4, Namatame H.4, Taniguchi M.4, Matsunami M.5, Kimura S.5, SHI Ming6, CHEN Xian-Hui3, YIN Wei-Guo2, KU Wei2**, XIE Bin-Ping1,7**, FENG Dong-Lai1,7**
1State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433
2Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, New York 11973, USA
3Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026
4Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-8526, Japan
5UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
6Swiss Light Source, Paul-Scherrer Institute, Villigen 5232, Switzerland
7Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Gulou, Nanjing 210093
Cite this article:   
XU Min, WANG Li-Min, PENG Rui et al  2015 Chin. Phys. Lett. 32 027401
Download: PDF(866KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Employing the angle-resolved photoemission spectroscopy, we study the electronic structure of TaFe1.23Te3, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional (2D) Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observe the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe1.23Te3 serves as a simpler platform that contains similar ingredients to the parent compounds of iron-based superconductors.

Published: 20 January 2015
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.70.-b (Superconducting materials other than cuprates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/027401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Min
WANG Li-Min
PENG Rui
GE Qing-Qin
CHEN Fei
YE Zi-Rong
ZHANG Yan
CHEN Su-Di
XIA Miao
LIU Rong-Hua
Arita M.
Shimada K.
Namatame H.
Taniguchi M.
Matsunami M.
Kimura S.
SHI Ming
CHEN Xian-Hui
YIN Wei-Guo
KU Wei
XIE Bin-Ping
FENG Dong-Lai

[1] Liu R H et al 2011 Phys. Rev. B 84 184432
[2] Lei H et al 2011 Phys. Rev. B 84 214511
[3] Caron J M et al 2011 Phys. Rev. B 84 180409
[4] McCabe E E, Free D G and Evans J S O 2011 Chem. Commun. 47 1261
[5] Li W et al 2012 in preparation (arXiv:1210.4619) [cond-mat.supr-con]
[6] Ke X et al 2012 Phys. Rev. B 85 214404
[7] Li S et al 2009 Phys. Rev. B 79 054503
[8] Zhang Y et al 2012 Phys. Rev. B 85 085121
[9] Yang L X et al 2009 Phys. Rev. Lett. 102 107002
[10] Ge Q Q et al 2013 Phys. Rev. X 3 011020
[11] Yi M et al 2011 Proc. Natl. Acad. Sci. USA 108 6878
[12] Wang X F et al 2009 Phys. Rev. Lett. 102 117005
[13] Zhang Y et al 2010 Phys. Rev. B 82 165113
[14] Liu Z K et al 2013 Phys. Rev. Lett. 110 037003
[15] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[16] Liu S X, Cai G L and Huang J L 1993 Acta Crystallogr. C 49 4
[17] Ku W, Berlijn Tom and Lee Chi-Cheng 2010 Phys. Rev. Lett. 104 216401
[18] He C et al 2010 Phys. Rev. Lett. 105 117002
[19] Tan S Y et al 2013 Nat. Mater. 12 634
[20] Haule K and Kotliar G 2009 New J. Phys. 11 025021
[21] Yin W G, Lee C C and Ku W 2010 Phys. Rev. Lett. 105 107004
       Yin W G, Lin C H and Ku W 2012 Phys. Rev. B 86 081106(R)
[22] Ong T Tzen and Coleman Piers 2012 Phys. Rev. Lett. 108 107201
[23] Jiang J et al 2013 Phys. Rev. B 88 115130

Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 027401
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 027401
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 027401
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 027401
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 027401
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 027401
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 027401
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 027401
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 027401
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 027401
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 027401
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 027401
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 027401
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 027401
[15] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 027401
Viewed
Full text


Abstract