Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 027301    DOI: 10.1088/0256-307X/32/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Impact of Surface Passivation on the Electronic Structure and Optical Properties of the Si1?xGex Nanowires
LAI Xin1,2, ZHANG Xi1,2**, ZHANG Yi-Xi1,2, XIANG Gang1,2**
1College of Physical Science and Technology, Sichuan University, Chengdu 610064
2Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064
Cite this article:   
LAI Xin, ZHANG Xi, ZHANG Yi-Xi et al  2015 Chin. Phys. Lett. 32 027301
Download: PDF(781KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structures and optical properties of the [110]?oriented Si1?xGex nanowires (NWs) passivated with different functional groups (?H, ?F and -OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1?xGex NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1?xGex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1?xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes.
Published: 20 January 2015
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/027301       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAI Xin
ZHANG Xi
ZHANG Yi-Xi
XIANG Gang
[1] Lee H and Choi H J 2010 Nano Lett. 10 2207
[2] Liu N et al 2011 J. Phys. Chem. C 115 15739
[3] Li R et al 2013 RSC Adv. 3 15982
[4] Nguyen B M et al 2014 Nano Lett. 14 585
[5] Yang J E et al 2006 Nano Lett. 6 2679
[6] McIntyre P C et al 2010 Semicond. Sci. Technol. 25 024016
[7] Goldberger J, Hochbaum A I, Fan R and Yang P D 2006 Nano Lett. 6 973
[8] Tsakalakos L, Balch J, Fronheiser J and Korevaar B A 2007 Appl. Phys. Lett. 91 233117
[9] Cui Y, Zhong Z H, Wang D L, Wang W U and Lieber C M 2003 Nano Lett. 3 149
[10] Moon C Y, Lee W J and Chang K J 2008 Nano Lett. 8 3086
[11] Nolan M, O'Callaghan S, Fagas G and Greer J C 2007 Nano Lett. 7 34
[12] Cui Y, Wei Q Q, Park H K and Lieber C M 2001 Science 293 1289
[13] Zhang Y X, Zhang X, Lai X and Xiang G 2014 Semicond. Sci. Technol. 29 075023
[14] Ho J C, Yerushalmi R, Jacobson Z A, Fan Z, Alley R L and Javey A 2008 Nat. Mater. 7 62
[15] Song Y P, Schmitt A L and Jin S 2007 Nano Lett. 7 965
[16] Leu P W, Shan B and Cho K 2006 Phys. Rev. B 73 195320
[17] Fernández-Serra M V, Adessi C and Blase X 2006 Nano Lett. 6 2674
[18] Henriksson A, Friedbacher G and Hoffmann H 2011 Langmuir 27 7345
[19] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C and Lieber C M 2004 Nano Lett. 4 433
[20] Ng M F, Zhou L P, Yang S W, Sim L Y, Tan V B C and Wu P 2007 Phys. Rev. B 76 155435
[21] Ng M F, Sim L Y, Da H X, Jin H M, Lim H K and Yang S W 2010 Theor. Chem. Acc. 127 689
[22] Bisi O, Ossicini S and Pavesi L 2000 Surf. Sci. Rep. 38 1
[23] Singh N, Buddharaju K D, Manhas S K, Agarwal A, Rustagi S C, Lo G Q, Balasubramanian N and Kwong D L 2008 IEEE Trans. Electron Devices 55 3107
[24] Wang Z and Mingo N 2010 Appl. Phys. Lett. 97 101903
[25] Zhang Y X, Xiang G, Gu G X, Li R, He D W and Zhang X 2012 J. Phys. Chem. C 116 17934
[26] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[27] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[28] Pek?z R and Raty J Y 2009 Phys. Rev. B 80 155432
[29] Aradi B, Ramos L E, Deák P, K?hler Th, Bechstedt F, Zhang R Q and Frauenheim Th 2007 Phys. Rev. B 76 035305
[30] Huo J, Solanki R, Freeouf J L and Carruthers J R 2004 Nanotechnology 15 1848
[31] Gao M Z, You S Y and Wang Y 2008 Jpn. J. Appl. Phys. 47 3303
[32] Pek?z R, Malc?o?lu O B and Raty J Y 2011 Phys. Rev. B 83 035317
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 027301
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 027301
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 027301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 027301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 027301
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 027301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 027301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 027301
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 027301
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 027301
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 027301
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 027301
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 027301
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 027301
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 027301
Viewed
Full text


Abstract