Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 027101    DOI: 10.1088/0256-307X/32/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Structural and Electronic Properties of Zigzag Graphene Nanoribbons on Si(001) Substrates
LI Jing, YANG Shen-Yuan**, LI Shu-Shen
The State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
LI Jing, YANG Shen-Yuan, LI Shu-Shen 2015 Chin. Phys. Lett. 32 027101
Download: PDF(624KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the adsorption of zigzag graphene nanoribbons (GNRs) on Si(001) substrates using the first-principles density functional theory, exploring the effects of the interface interaction on the structural and electronic properties of both GNRs and the substrate. By comparing the adsorption structures predicted by the local density approximation, the generalized gradient approximation, and the DFT-D2 approach, we confirm that both edge and inner C atoms of GNRs can form covalent bonds with the substrate. The GNR/substrate interaction destroys the antiferromagnetic coupling of the edge states in GNRs. The charge transfer from the substrate to GNRs exhibits a complicated pattern and is mainly localized near the C–Si bonds. We also observe a strong perturbation of the surface states and a surface reconstruction transition induced by the GNR adsorption.

Published: 20 January 2015
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  73.20.At (Surface states, band structure, electron density of states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/027101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/027101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jing
YANG Shen-Yuan
LI Shu-Shen

[1] Novoselov K S et al 2004 Science 306 666
[2] Zhang Y et al 2005 Nature 438 201
[3] Han M Y et al 2007 Phys. Rev. Lett. 98 206805
[4] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[5] Zhou S Y et al 2007 Nat. Mater. 6 770
[6] Mattausch A and Pankratov O 2007 Phys. Rev. Lett. 99 076802
[7] Ishigami M et al 2007 Nano Lett. 7 1643
[8] Cuong N T, Otani M and Okada S 2011 Phys. Rev. Lett. 106 106801
[9] Xu Y et al 2011 Nano Lett. 11 2735
[10] Zhang Z and Guo W 2009 Appl. Phys. Lett. 95 023107
[11] Zhang Z, Guo W and Zeng X C 2010 Phys. Rev. B 82 235423
[12] Wang W et al 2011 Appl. Surf. Sci. 257 2474
[13] Yang H et al 2012 Science 336 1140
[14] Tayran C et al 2013 Phys. Rev. Lett. 110 176805
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
       Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[16] Blöchl P E 1994 Phys. Rev. B 50 17953
[17] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[18] Grimme S 2006 J. Comput. Chem. 27 1787
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Zhang L X et al 2006 Phys. Rev. Lett. 97 126103
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] He K T et al 2010 Nano Lett. 10 3446
[23] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[24] Seino K, Schmidt W G and Bechstedt F 2004 Phys. Rev. Lett. 93 036101

Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 027101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 027101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 027101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 027101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 027101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 027101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 027101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 027101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 027101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 027101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 027101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 027101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 027101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 027101
Viewed
Full text


Abstract