Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 026101    DOI: 10.1088/0256-307X/32/2/026101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
First Principles Study on Mechanical Properties of Superhard α-Ga Boron
XU Yuan-Hui1, LIU Hui-Yun2, HAO Xian-Feng1, CHEN Rong-Na1, GAO Fa-Ming1**
1Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004
2Department of Computer Technology, Hebei College of Industry and Technology, Shijiazhuang 050090
Cite this article:   
XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng et al  2015 Chin. Phys. Lett. 32 026101
Download: PDF(714KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The mechanical properties and intrinsic hardness of the α-Ga boron phase (α-Ga-B) are studied by using the combination of first-principles calculations and a semiempirical macroscopic hardness model. It is found that α-Ga-B is mechanically stable and possesses higher bulk/shear modulus as compared with γ-B28, a newly discovered high-pressure boron phase. The theoretical hardness of α-Ga-B is estimated to be 45 GPa, which is much higher than 38 GPa for γ-B28. The results strongly indicate that α-Ga-B is a potential superhard boron phase. To further obtain insight into the superhard nature of α-Ga-B, we simulate stress–strain curves under tensile and shear deformation. Meanwhile, the microscopic mechanism driving the tensile and shear deformation modes in α-Ga-B is discussed in detail.
Published: 20 January 2015
PACS:  61.50.Lt (Crystal binding; cohesive energy)  
  62.20.Qp (Friction, tribology, and hardness)  
  71.10.-w (Theories and models of many-electron systems)  
  81.05.Zx (New materials: theory, design, and fabrication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/026101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/026101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yuan-Hui
LIU Hui-Yun
HAO Xian-Feng
CHEN Rong-Na
GAO Fa-Ming
[1] Ramaseshan S 1946 Proc. Indian Acad. Sci. A 24 114
[2] Bundy F R and Wentorg R H Jr 1963 J. Chem. Phys. 38 1144
[3] Gao F M 2011 Chin. Phys. Lett. 28 076102
[4] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[5] Li W K, Zhou G D and Mak T C W 2008 Advanced Structural Inorganic Chemistry (Oxford: Oxford University Press)
[6] Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863
[7] Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N et al 2009 Phys. Rev. Lett. 102 185501
[8] Solozhenko V L, Kurakevych O O and Oganov A R 2008 J. Superhard Mater. 30 428
[9] Zhou W, Sun H and Chen C F 2010 Phys. Rev. Lett. 105 215503
[10] H ?ussermann U, Simak S I, Ahuja R and Johansson B 2003 Phys. Rev. Lett. 90 065701
[11] Ma Y, Tse J S, Klug D D and Ahuja R 2004 Phys. Rev. B 70 214107
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[16] Pfrommer B G, C?té M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[17] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press)
[18] Hill R 1952 Proc. Phys. Soc. London 65 350
[19] Jiang C, Lin Z, Zhang J Z and Zhao Y S 2009 Appl. Phys. Lett. 94 191906
[20] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[21] Gao F M, Hou L and He Y H 2004 J. Phys. Chem. B 108 13069
[22] H ?ussermann U and Mikhaylushkin A S 2010 Inorg. Chem. 49 11270
[23] Chen X, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[24] Roundy D, Krenn C R, Cohen M L and Morris J W Jr 1999 Phys. Rev. Lett. 82 2713
[25] Jhi S H, Louie S G, Cohen M L and Morris J W Jr 2001 Phys. Rev. Lett. 87 075503
Related articles from Frontiers Journals
[1] Li Yang , Hui Liu, Hui-Ling Zhou, Qing-Qiang Sun, Shu-Ming Peng, Xing-Gui Long, Xiao-Song Zhou, Xiao-Tao Zu, Fei Gao. An Isotropic Empirical Intermolecular Potential for Solid H$_{2}$ and D$_{2}$: A Classical Molecular Calculation[J]. Chin. Phys. Lett., 2017, 34(12): 026101
[2] Nguyen Ngoc Hieu, Le Cong Nhan. Electronic Band Structure of Carbon Nanotubes with Kekule Structure[J]. Chin. Phys. Lett., 2013, 30(9): 026101
[3] GAO Ning, WEI Kong-Fang, ZHANG Shi-Xu, WANG Zhi-Guang. The Energy State and Phase Transition of Cu Clusters in bcc-Fe Studied by a Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2012, 29(9): 026101
[4] GAO Fa-Ming . Theoretical Hardness of Zr3N4 Films[J]. Chin. Phys. Lett., 2011, 28(7): 026101
[5] LIU Yue-Wei, WANG Lu, ZHANG Han. Reconsideration of Orth I and Orth II Phases in Ln-System Superconductors[J]. Chin. Phys. Lett., 2006, 23(2): 026101
[6] ZHENG Li-Ping, MA Yu-Gang, XU Zi-Jian, ZHU Zhi-Yuan, LI Dou-Xing. Analysis of Ni75-3x/4Al25-x/4Crx Grain Boundary Structures with a Double Species Model[J]. Chin. Phys. Lett., 2005, 22(6): 026101
[7] ZHENG Li-Ping, ZHANG Hu-Yong, LI Dou-Xing, CUI Fu-Zhai. Calculation of the Griffith Cohesive Energy of the Ni3AlBx Symmetrical Grain Boundary[J]. Chin. Phys. Lett., 2002, 19(10): 026101
[8] DUAN Su-Qing, ZHAO Xian-Geng, LIU Shao-Jun, MA Ben-Kun. Effect of the Vibrational Modes on the Ag-Cu Phase Diagram[J]. Chin. Phys. Lett., 2000, 17(7): 026101
[9] LIU Shao-jun, CAI Jun, DUAN Su-qing, MA Ben-kun. Application of a Simple Semi-empirical Interatomic Potential Model to Phonon Density of States of Fe3Al[J]. Chin. Phys. Lett., 1999, 16(12): 026101
[10] PAN Yi-wei, ZHANG Wen-qing, CHEN Nan-xian. Structure Properties of Ternary Hydrides Ni3A1Hx[J]. Chin. Phys. Lett., 1996, 13(9): 026101
[11] JIANG Zongfu, LAI Wuyan. Discussion of Solid C60 Upon Lennard-Jones Potential[J]. Chin. Phys. Lett., 1992, 9(9): 026101
Viewed
Full text


Abstract