FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Development of Surface Grating Distributed Feedback Quantum Cascade Laser for High Output Power and Low Threshold Current Density |
LIU Ying-Hui1, ZHANG Jin-Chuan1**, JIANG Jian-Min2, SUN Su-Juan2, LI Pei-Xu2, LIU Feng-Qi1** |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Huaguang Optoelectronics Co. Ltd., Ji'nan 250000
|
|
Cite this article: |
LIU Ying-Hui, ZHANG Jin-Chuan, JIANG Jian-Min et al 2015 Chin. Phys. Lett. 32 024202 |
|
|
Abstract We report on the room-temperature cw operation of a surface grating distributed feedback (DFB) quantum cascade laser (QCL) at λ~4.7 μm. Both grating design and material optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4-mm-long laser, high wall-plug efficiency of 6% is obtained at 20°C from a single facet producing over 1 W of cw output power. The threshold current density of DFB QCL is as low as 1.13 kA/cm2 at 10°C and 1.34 kA/cm2 at 30°C in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in the working temperature range of 20–50°C.
|
|
Published: 20 January 2015
|
|
|
|
|
|
[1] Namjou K, Cai S, Whittaker E A, Faist J, Gmachl G, Capasso F, Sivco D L and Cho A Y 1998 Opt. Lett. 23 219 [2] Kosterev A and Tittel F 2002 Quantum Electron. 38 582 [3] Corrigan P, Martini R, Whittaker E A and Bethea C 2009 Opt. Express 17 4355 [4] Faist J, Gmachl C, Capasso F, Sirtori C, Sivco D L, Baillargeon J N and Cho A Y 1997 Appl. Phys. Lett. 70 2670 [5] Darvish S R, Zhang W, Evans A, Yu J S, Slivken S and Razeghi M 2006 Appl. Phys. Lett. 89 251119 [6] Xie F, Caneau C G, Leblanc H P, Visovsky N J and Coleman S 2009 Appl. Phys. Lett. 95 091110 [7] Yu J S, Slivken S, Darvish S R, Evans A, Gokden B and Razeghi M 2005 Appl. Phys. Lett. 87 041104 [8] Zhang J C, Wang L J, Tan S, Liu W F, Zhao L H, Liu F Q, Liu J Q, Li L and Wang Z G 2011 IEEE Photon. Technol. Lett. 23 1334 [9] Hinkov B, Bismuto A, Bonetti Y, Beck M, Blaser S and Faist J 2012 Electron. Lett. 48 646 [10] Kogelnik H and Shank C V 1972 J. Appl. Phys. 43 2327 [11] Bai Y, Bandyopadhyay N, Tsao S, Slivken S and Razeghi M 2011 Appl. Phys. Lett. 98 181102 [12] Carras M, Maisons G, Simozrag B, Garcia M, Parillaud O, Massies J and Marcadet X 2010 Appl. Phys. Lett. 96 161105 [13] Zhang J C, Liu F Q, Wang L J, Chen J Y, Zhai S Q, Liu J Q and Wang Z G 2013 IEEE Photon. Technol. Lett. 25 686 [14] Lu Q Y, Bai Y, Bandyopadhyay N, Slivken S and Razeghi M 2010 Appl. Phys. Lett. 97 231119 [15] Evans A, Darvish S R, Slivken S, Nguyen J, Bai Y and Razeghi M 2007 Appl. Phys. Lett. 91 071101 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|