Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 023102    DOI: 10.1088/0256-307X/32/2/023102
ATOMIC AND MOLECULAR PHYSICS |
Shannon Entropy as a Measurement of the Information in a Multiconfiguration Dirac–Fock Wavefunction
WAN Jian-Jie**
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
WAN Jian-Jie 2015 Chin. Phys. Lett. 32 023102
Download: PDF(730KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Discrete Shannon entropy is applied to describe the information in a multiconfiguration Dirac–Fock wavefunction. The dependence of Shannon entropy is shown as enlarging the configuration space and it can reach saturation when there are enough configuration state wavefunctions to obtain the convergent energy levels; that is, the calculation procedure in multiconfiguration Dirac–Fock method is an entropy saturation process. At the same accuracy level, the basis sets for the smallest entropy are best able to describe the energy state. Additionally, a connection between the sudden change of Shannon information entropies and energy level crossings along with isoelectronic sequence can be set up, which is helpful to find the energy level crossings of interest in interpreting and foreseeing the inversion scheme of energy levels for an x-ray laser.
Published: 20 January 2015
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.V- (Electron correlation calculations for atoms, ions and molecules)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  89.70.Cf (Entropy and other measures of information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/023102       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/023102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WAN Jian-Jie
[1] Shannon C E 1948 Bell Syst. Tech. J. 27 623
[2] González-Férez R and Dehesa J S 2003 Phys. Rev. Lett. 91 113001
[3] Angulo J C, Antolín J and Sen K D 2008 Phys. Lett. A 372 670
[4] López-Ruiz R, Mancini H L and Calbet X 1995 Phys. Lett. A 209 321
[5] Catalán R G, Garay J and López-Ruiz R 2002 Phys. Rev. E 66 011102
[6] Nagy á and Liu S B 2008 Phys. Lett. A 372 1654
[7] Baccetti V and Visser M 2013 J. Stat. Mech. 2013 P04010
[8] Fischer C F 1991 Comput. Phys. Commun. 64 369
[9] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[10] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer)
[11] Lipsky L and Russek A 1966 Phys. Rev. 142 59
[12] Lipsky L and Conneely M J 1976 Phys. Rev. A 14 2193
[13] Herrick D R and Sinano?lu O 1975 Phys. Rev. A 11 97
[14] Lin C D 1986 Adv. At. Mol. Phys. 22 77
[15] Wan J J, Xie L Y, Dong C Z, Jiang J and Yan J 2007 Acta Phys. Sin. 56 152 (in Chinese)
Related articles from Frontiers Journals
[1] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 023102
[2] Weiyu Xie, Yu Zhu, Jianpeng Wang, Aihua Cheng, Zhigang Wang. Magnetic Coupling Induced Self-Assembly at Atomic Level[J]. Chin. Phys. Lett., 2019, 36(11): 023102
[3] Binbin Lu, Dongdong Kang, Dan Wang, Tianyu Gao, Jiayu Dai. Towards the Same Line of Liquid–Liquid Phase Transition of Dense Hydrogen from Various Theoretical Predictions[J]. Chin. Phys. Lett., 2019, 36(10): 023102
[4] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 023102
[5] REN Jun-Feng, YUAN Xiao-Bo, HU Gui-Chao. Spin Polarization Properties of Na Doped Meridianal Tris(8-Hydroxyquinoline) Aluminum Studied by First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(04): 023102
[6] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 023102
[7] ZHAO Yun-Hui, PAN Yi-Qing, LI Wen-Juan, DENG Xia, HAI Wen-Hua. Variational-Integral Perturbation Corrections for Hydrogen Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2013, 30(1): 023102
[8] XIONG Na, LI Biao. Dynamics of Matter-Wave Solitons for Three-Dimensional Bose–Einstein Condensates with Time-Space Modulation[J]. Chin. Phys. Lett., 2012, 29(9): 023102
[9] Farid Shähandeh, Mohammad Reza Bazrafkan, Mahmoud Ashrafi. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem[J]. Chin. Phys. Lett., 2012, 29(9): 023102
[10] I. I. Guseinov. One-Range Addition Theorems in Terms of Ψα -ETOs for STOs and Coulomb--Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices[J]. Chin. Phys. Lett., 2008, 25(12): 023102
[11] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 023102
[12] CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains[J]. Chin. Phys. Lett., 2008, 25(3): 023102
[13] WU Xue-Wei, NIU Dong-Lin, LIU Xiao-Jun. Photoinduced Reconstruction of Electronic Structure in Half-Metal CrO2[J]. Chin. Phys. Lett., 2007, 24(12): 023102
[14] BIAN Xue-Bin, QIAO Hao-Xue, SHI Ting-Yun. B-Spline with Symplectic Algorithm Method for Solution of Time-Dependent Schrödinger Equations[J]. Chin. Phys. Lett., 2006, 23(9): 023102
[15] Kazuhiro Ishida. Molecular Integral for the Double Electron-Repulsion Potential: A Closed Form Underived for Forty Years[J]. Chin. Phys. Lett., 2005, 22(12): 023102
Viewed
Full text


Abstract