Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 023101    DOI: 10.1088/0256-307X/32/2/023101
ATOMIC AND MOLECULAR PHYSICS |
Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex
WANG Yun-Peng, DU Lu-Chao, ZHU Gang-Bei, WANG Zhuan, WENG Yu-Xiang**
Laboratory of Soft Matter Physics, and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
WANG Yun-Peng, DU Lu-Chao, ZHU Gang-Bei et al  2015 Chin. Phys. Lett. 32 023101
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C9 symmetry in membrane to C2 symmetry in solution.
Published: 20 January 2015
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  78.47.jp (Optical nutation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/023101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/023101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yun-Peng
DU Lu-Chao
ZHU Gang-Bei
WANG Zhuan
WENG Yu-Xiang
[1] Trissl H, Law C J and Cogdell R J 1999 Biochim. Biophys. Acta Bioenerg. 1412 149
[2] Herek J L, Fraser N J, Pullerits T, Martinsson P and Polívka T 2000 Biophys. J. 78 2590
[3] Zazubovich V, Jankowiak R and Small G J 2002 J. Lumin. 98 123
[4] Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H and Cogdell R J 2006 Biophys. J. 90 2486
[5] Hildner R, Brinks D, Nieder J B, Cogdell R J and van Hulst N F 2013 Science 340 1448
[6] Fidler A F, Singh V P, Long P D, Dahlberg P D and Engel G S 2013 J. Chem. Phys. 139 155101
[7] McDermott G, Prince S M, Freer A A, Hawthornthwaite-Lawless A M, Papiz M Z, Cogdell R J and Isaacs N W 1995 Nature 374 517
[8] Nagarajan V, Alden R G, Williams J C and Parson W W 1996 Proc. Natl. Acad. Sci. USA 93 13774
[9] Sauer K, Cogdell R J, Prince S M, Freer A, Isaacs N W and Scheer H 1996 Photochem. Photobiol. 64 564
[10] Wu H M, Savikhin S, Reddy N R S, Jankowiak R, Cogdell R J, Struve W S and Small G J 1996 J. Phys. Chem. 100 12022
[11] Scheuring S, Francia F, Busselez J, Melandri B A, Rigaud J L and L évy D 2003 J. Biol. Chem. 279 3620
[12] Walz T, Jamieson S J, Bowers C M, Bullough P A, Hunter C N and Bank W 1998 J. Mol. Biol. 282 833
[13] Nagarajan V, Johnson E T, Williams J C and Parson W W 1999 J. Phys. Chem. B 103 2297
[14] Pullerits T, Chachisvilis M and Sundstro V 1996 J. Phys. Chem. 100 10787
[15] Trinkunas G, Herek J, Polívka T, Sundstr?m V and Pullerits T 2001 Phys. Rev. Lett. 86 4167
[16] Kennis J T M, Streltsov A M, Permentier H and Aartsma T J 1997 J. Phys. Chem. B 101 8369
[17] Guo L, Liu Y, Yang Y, Mi J, Xu C, Xu C and Qian S 2002 FEBS Lett. 511 69
[18] Book L D, Ostafin a E, Ponomarenko N, Norris J R and Scherer N F 2000 J. Phys. Chem. B 104 8295
[19] Ma Y, Cogdell R J and Gillbro T 1997 J. Phys. Chem. B 101 1087
[20] Chen X H, Zhang L, Weng Y X, Du L C, Ye M P, Yang G Z, Fujii R, Rondonuwu F S, Koyama Y, Wu Y S and Zhang J P 2005 Biophys. J. 88 4262
[21] Hong X, Weng Y and Li M 2004 Biophys. J. 86 1082
[22] Du L, Weng Y, Hong X, Xian D and Kobayashi K 2006 Chin. Phys. Lett. 23 1861
[23] Matsushita M, Ketelaars M, van Oijen a M, K?hler J, Aartsma T J and Schmidt J 2001 Biophys. J. 80 1604
[24] Bose S 1963 Bacterial Photosynthesis edn: H Gest, A San Pietro and L P Vernon (Ohio: Antioch Press)
[25] Ohashi N, KoChi N, Kuki M, Shimamura T, Cogdell R J and Koyama Y 1998 Biospectroscopy 2 59
[26] Jimenez R, Dikshit S N, Bradforth S E and Fleming G R 1996 J. Phys. Chem. 100 6825
Related articles from Frontiers Journals
[1] LI Hong-Zheng, LIU Xin-Guo, TAN Rui-Shan, HU Mei. Stereodynamics Study of Li+HF→LiF+H Reactions on X2A' Potential Energy Surface at Collision Energies below 5.00 kcal/mol[J]. Chin. Phys. Lett., 2015, 32(08): 023101
[2] WEI Qiang. A New Reaction Path for the C+NO→CN+O Reaction: Effect of Reagent Rotation on the Stereodynamics on the 4A" Potential-Energy Surface[J]. Chin. Phys. Lett., 2015, 32(01): 023101
[3] WEI Qiang . Theoretical Calculation of Vector Correlations of the Reaction D'(2S)+DS(X1 Σ+)S(1D)+D2[J]. Chin. Phys. Lett., 2013, 30(7): 023101
[4] TAN Rui-Shan, LIU Xin-Guo, HU Mei. Stereodynamics Study of Li+HF/DF/TF→LiF+H/D/T Reactions on X2A' Potential Energy Surface[J]. Chin. Phys. Lett., 2012, 29(12): 023101
[5] XIE Ting-Xian, SHI Ying** . Reagent Vibration Effect on the Stereodynamics for the C+CDC2+D Reaction*[J]. Chin. Phys. Lett., 2011, 28(11): 023101
[6] CHEN Jia-Wu, LIU Xin-Guo**, SUN Hai-Zhu, ZHANG Qing-Gang . Effect of Collision Energy on the Reactivity O++T2OT++T by the Quasiclassical Trajectory Method[J]. Chin. Phys. Lett., 2011, 28(9): 023101
[7] LIU Shi-Li, SHI Ying . Theoretical Study of Isotopic Effect of Oxygen Atom on the Stereodynamics for the O(3P)+ D2 → OD+D Reaction[J]. Chin. Phys. Lett., 2010, 27(12): 023101
[8] LIU Hui-Rong, LIU Xin-Guo, SUN Hai-Zhu, ZHANG Qing-Gang . Quasi-Classical Trajectory Study on Ar+H2+/D2+/T2+ Reactions[J]. Chin. Phys. Lett., 2010, 27(10): 023101
[9] ZHU Tong, HU Guo-Dong, ZHANG Qing-Gang. Quasi-classical Trajectory Study of Reaction O (3P)+HCl (v =2; j=1,6,9) →OH+Cl[J]. Chin. Phys. Lett., 2010, 27(3): 023101
[10] KONG Hao, LIU Xin-Guo, XU Wen-Wu, ZHANG Qing-Gang. Stereodynamics of the He+D2+→HeD++D Reaction on the PALMIERI Surface[J]. Chin. Phys. Lett., 2009, 26(5): 023101
Viewed
Full text


Abstract