GENERAL |
|
|
|
|
Controlling the Directed Quantum Transport of Ultracold Atoms in an Optical Lattice with a Periodic Driving Field |
DONG Dong1, GONG Ming2, ZOU Xu-Bo1**, GUO Guang-Can1 |
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 2Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164 USA
|
|
Cite this article: |
DONG Dong, GONG Ming, ZOU Xu-Bo et al 2015 Chin. Phys. Lett. 32 020303 |
|
|
Abstract We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a much easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al. [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.
|
|
Published: 20 January 2015
|
|
PACS: |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.65.Xp
|
(Tunneling, traversal time, quantum Zeno dynamics)
|
|
|
|
|
[1] Seaman B T, Kramer M, Anderson D Z and Holland M J 2007 Phys. Rev. A 75 023615 [2] Pepino R A, Cooper J, Meiser D, Anderson D Z and Holland M J 2010 Phys. Rev. A 82 013640 [3] Vaishnav J Y, Ruseckas J, Clark C W and Juzeliunas G 2008 Phys. Rev. Lett. 101 265302 [4] Posazhennikova A 2006 Rev. Mod. Phys. 78 1111 [5] Creffield C E 2007 Phys. Rev. Lett. 99 110501 [6] Qian Y Y, Gong M, Zhang C W 2011 Phys. Rev. A 84 013608 [7] Barber Z W, Hoyt C W, Oates C W, Hollberg L, Taichenachev A V and Yudin Y I 2006 Phys. Rev. Lett. 96 083002 [8] Grossmann F, Drittrich T, Jung P and Hanggi P 1991 Phys. Rev. Lett. 67 516 [9] Gong J B, Morales-Molina L and Hanggi P 2009 Phys. Rev. Lett. 103 133002 [10] Sias C, Lignier H, Singh Y P, Zenesini A, Ciampini D, Morsh O and Arimondo E 2008 Phys. Rev. Lett. 100 040404 [11] Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101(R) [12] Fuisher M P, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546 [13] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108 [14] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402 [15] Poletti D, Benenti G, Casati G, Hanggi P and Li B W 2009 Phys. Rev. Lett. 102 130604 [16] Salger T, Geckeler C, Kling S and Weitz M 2007 Phys. Rev. Lett. 99 190405 [17] Madison K W, Fisher M C, Diener P B, Niu Q and Raizen M G 1998 Phys. Rev. Lett. 81 5093 [18] Tsuji N, Oka T, Werner P and Aoki H 2011 Phys. Rev. Lett. 106 236401 [19] Modugno M 2009 New J. Phys. 11 033023 [20] Theodorou G and Cohen M H 1976 Phys. Rev. B 13 4597 [21] Brouwder P W, Mudry C and Furusaki A 2000 Phys. Rev. Lett. 84 2913 [22] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895 [23] White M, Pasienski M, McKay D, Zhou S Q, Ceperley D and DeMarco B 2009 Phys. Rev. Lett. 102 055301 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|