Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 020303    DOI: 10.1088/0256-307X/32/2/020303
GENERAL |
Controlling the Directed Quantum Transport of Ultracold Atoms in an Optical Lattice with a Periodic Driving Field
DONG Dong1, GONG Ming2, ZOU Xu-Bo1**, GUO Guang-Can1
1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
2Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164 USA
Cite this article:   
DONG Dong, GONG Ming, ZOU Xu-Bo et al  2015 Chin. Phys. Lett. 32 020303
Download: PDF(855KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new method to control the directed quantum transport of ultracold atoms in a one-dimensional optical lattice. In this proposal, the effective tunneling between the neighboring sites can be adjusted via coherent destruction of tunneling by tuning the phase of the external field, instead of using the driving field intensity or the frequency, thus the directed quantum transport of ultracold atoms can be coherently controlled in a much easier manner. Our proposal overcomes the major drawback of the method used by Creffield et al. [Phys. Rev. Lett. 99 (2007) 110501], and can be implemented, in principle, in any one-dimensional optical lattice. Some potential applications of the scheme are also discussed.
Published: 20 January 2015
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/020303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/020303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Dong
GONG Ming
ZOU Xu-Bo
GUO Guang-Can
[1] Seaman B T, Kramer M, Anderson D Z and Holland M J 2007 Phys. Rev. A 75 023615
[2] Pepino R A, Cooper J, Meiser D, Anderson D Z and Holland M J 2010 Phys. Rev. A 82 013640
[3] Vaishnav J Y, Ruseckas J, Clark C W and Juzeliunas G 2008 Phys. Rev. Lett. 101 265302
[4] Posazhennikova A 2006 Rev. Mod. Phys. 78 1111
[5] Creffield C E 2007 Phys. Rev. Lett. 99 110501
[6] Qian Y Y, Gong M, Zhang C W 2011 Phys. Rev. A 84 013608
[7] Barber Z W, Hoyt C W, Oates C W, Hollberg L, Taichenachev A V and Yudin Y I 2006 Phys. Rev. Lett. 96 083002
[8] Grossmann F, Drittrich T, Jung P and Hanggi P 1991 Phys. Rev. Lett. 67 516
[9] Gong J B, Morales-Molina L and Hanggi P 2009 Phys. Rev. Lett. 103 133002
[10] Sias C, Lignier H, Singh Y P, Zenesini A, Ciampini D, Morsh O and Arimondo E 2008 Phys. Rev. Lett. 100 040404
[11] Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101(R)
[12] Fuisher M P, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[13] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[14] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[15] Poletti D, Benenti G, Casati G, Hanggi P and Li B W 2009 Phys. Rev. Lett. 102 130604
[16] Salger T, Geckeler C, Kling S and Weitz M 2007 Phys. Rev. Lett. 99 190405
[17] Madison K W, Fisher M C, Diener P B, Niu Q and Raizen M G 1998 Phys. Rev. Lett. 81 5093
[18] Tsuji N, Oka T, Werner P and Aoki H 2011 Phys. Rev. Lett. 106 236401
[19] Modugno M 2009 New J. Phys. 11 033023
[20] Theodorou G and Cohen M H 1976 Phys. Rev. B 13 4597
[21] Brouwder P W, Mudry C and Furusaki A 2000 Phys. Rev. Lett. 84 2913
[22] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[23] White M, Pasienski M, McKay D, Zhou S Q, Ceperley D and DeMarco B 2009 Phys. Rev. Lett. 102 055301
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 020303
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 020303
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 020303
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 020303
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 020303
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 020303
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 020303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 020303
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 020303
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 020303
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 020303
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 020303
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 020303
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 020303
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 020303
Viewed
Full text


Abstract