GENERAL |
|
|
|
|
A Comparison of the Concurrence and the Quantum Discord in a Two-Qubit System |
YANG Guo-Hui**, WANG Rong |
School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
|
|
Cite this article: |
YANG Guo-Hui, WANG Rong 2015 Chin. Phys. Lett. 32 020302 |
|
|
Abstract The quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence are investigated with the use of concurrence C and quantum discord (QD). There is a remarkable difference between the time evolution behaviors of these two correlation measures: there is a entanglement-sudden-death phenomenon in the concurrence while there is none in QD, which is valid for all of the initial states of this system, and the interval time of the entanglement death is found to be strongly dependent on the initial states and the parameters B and Δ. With the long-time limit the steady entanglement (SC) and steady quantum discord (SQD) can be obtained. The magnitudes of SC and SQD are closely related to the parameters B and Δ, while the strength of the Dzyaloshinskii–Moriya interaction, D, has no influence. In addition, the effects of the parameters B and Δ on SC and SQD display such different and complicated features that one cannot obtain a uniform law about them, thus we give an analytical explanation of this phenomenon. Lastly, it can be noted that the value of SC is not always larger than SQD, which is strongly dependent on the parameters B and Δ.
|
|
Published: 20 January 2015
|
|
PACS: |
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
75.10.Pq
|
(Spin chain models)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [2] Barenco A, Deutsch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083 [3] Cubit T S, Verstraete F and Cirac J I 2005 Phys. Rev. A 71 052308 [4] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304 [5] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054 [6] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [7] Niset J and Cerf N J 2006 Phys. Rev. A 74 052103 [8] Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 [9] Streltsov A, Kampermann H and Bru? D 2012 Phys. Rev. Lett. 108 250501 [10] Wang C, Zhang Y Y and Chen Q H 2012 Phys. Rev. A 85 052112 [11] Liang Y C and Lin H Q 2011 Phys. Rev. A 83 052323 [12] Yuan J B and Kuang L M 2013 Phys. Rev. A 87 024101 [13] Xu L, Yuan J B, Tan Q S, Zhou L and Kuang L M 2011 Eur. Phys. J. D 64 565 [14] Yuan J B, Liao J Q and Kuang L M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 165503 [15] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408 [16] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301 [17] Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867 [18] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302 [19] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902 [20] Loss D and Divincenzo D P 1998 Phys. Rev. A 57 120 [21] Zhang G F 2007 Phys. Rev. A 75 034304 [22] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105 [23] Lindblad G 1976 Commun. Math. Phys. 48 199 [24] Maziero J, Celeri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102 [25] Fanchinietal F F 2009 arXiv:0911.1096[quant-ph] [26] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604 [27] Wang C Z, Li C X et al 2011 J. Phys. B 44 015503 [28] Luo S 2008 Phys. Rev. A 77 042303 [29] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459 [30] Maziero J, Werlang T, Fanchini F F, Celeri L C and Serra R M 2010 Phys. Rev. A 81 022116 [31] Li G X, Zhen Y and Zbigniew Ficek 2011 arXiv:1101.4983v1 [quant-ph] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|