GENERAL |
|
|
|
|
Archimedean-Spiral-Based Microchip Ring Waveguide for Cold Atoms |
JIANG Xiao-Jun1,2, LI Xiao-Lin1, XU Xin-Ping1, ZHANG Hai-Chao1, WANG Yu-Zhu1 |
1Key Laboratory for Quantum Optics and Center for Cold Atom Physics of Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
JIANG Xiao-Jun, LI Xiao-Lin, XU Xin-Ping et al 2015 Chin. Phys. Lett. 32 020301 |
|
|
Abstract We present a scheme for generating a ring magnetic waveguide on a single-layer atom chip. The wire layout consists of two interleaved Archimedean spirals of the same size. The waveguide avoids the trapping perturbation caused by the input and output ports, resulting in an enclosed guiding loop for neutral atoms in weak-field seeking states. Such a configuration can create a tight and deep trap potential with a small current. Taking the |F=2,mF=2> state of 87Rb as an example, the trap frequency and depth are estimated to be 18 kHz and 335 μK, respectively, with a dc current of 2 A.
|
|
Published: 20 January 2015
|
|
PACS: |
03.75.Dg
|
(Atom and neutron interferometry)
|
|
37.25.+k
|
(Atom interferometry techniques)
|
|
|
|
|
[1] Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D and Pritchard D E 1995 Phys. Rev. A 51 3883[2] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046[3] Snadden M J, McGuirk J M, Bouyer P, Haritos K G and Kasevich M A 1998 Phys. Rev. Lett. 81 971[4] Wicht A, Hensley J M, Sarajlic E and Chu S 2002 Phys. Scr. T102 82[5] Gupta S, Dieckmann K, Hadzibabic Z and Pritchard D E 2002 Phys. Rev. Lett. 89 140401[6] Gustavson T L, Landragin A and Kasevich M A 2000 Class. Quantum Grav. 17 2385[7] Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bordé Ch J, Landragin A and Bouyer P 2006 Phys. Rev. Lett. 97 010402[8] Baker P M, Stickney J A, Squires M B, Scoville J A, Carlson E J, Buchwald W R and Miller S M 2009 Phys. Rev. A 80 063615[9] Wu S, Su E and Prentiss M 2007 Phys. Rev. Lett. 99 173201[10] Morizot O, Colombe Y, Lorent V, Perrin H and Garraway B M 2006 Phys. Rev. A 74 023617[11] Lesanovsky I and Klitzing W V 2007 Phys. Rev. Lett. 99 083001[12] Heathcote W H, Nugent E, Sheard B T and Foot C J 2008 New J. Phys. 10 043012[13] Sherlock B E, Gildemeister M, Owen E, Nugent E and Foot C J 2011 Phys. Rev. A 83 043408[14] West A D, Wade C G, Weatherill K J and Hughes I G 2012 Appl. Phys. Lett. 101 023115[15] Sauer J A, Barrett M D and Chapman M S 2001 Phys. Rev. Lett. 87 270401[16] Gupta S, Murch K W, Moore K L, Purdy T P and Stamper-Kurn D M 2005 Phys. Rev. Lett. 95 143201[17] Arnold A S, Garvie C S and Riis E 2006 Phys. Rev. A 73 041606[18] Griffin P F, Riis E and Arnold A S 2008 Phys. Rev. A 77 051402 R[19] Pritchard J D, Dinkelaker A N, Arnold A S, Griffin P F and Riis E 2012 New J. Phys. 14 103047[20] Fortágh J and Zimmermann C 2007 Rev. Mod. Phys. 79 235[21] Weinstein J D and Libbrecht K G 1995 Phys. Rev. A 52 4004[22] Thywissen J H, Olshanii M, Zabow G, Drndi? M, Johnson K S, Westervelt R M and Prentiss M 1999 Eur. Phys. J. D 7 361[23] Crookston M B, Baker P M and Robinson M P 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3289[24] Jackson J D 1999 Class. ElectroDyn. 3rd edn (NewYork: Wiley)[25] Reichel J 2002 Appl. Phys. B 74 469[26] Gustavson T L, Chikkatur A P, Leanhardt A E, Grlitz A, Gupta S, Pritchard D E and Ketterle W 2001 Phys. Rev. Lett. 88 020401 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|