CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory |
CHEN Yong-Chang1**, HUO Miao1, LIU Yang3, CHEN Tong4, LENG Cheng-Cai1, LI Qiang2, SUN Zhao-Lin2, SONG Li-Juan2 |
1School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 2Liaoning Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001 3Sinopec Fushun Research Institute of Petroleum and Petrochemicals, Fushun 113001 4State Key Laboratory of Food Additive and Condiment Testing, Zhenjiang Entry-Exit Inspection Quarantine Bureau, Zhenjiang 212000
|
|
Cite this article: |
CHEN Yong-Chang, HUO Miao, LIU Yang et al 2015 Chin. Phys. Lett. 32 017102 |
|
|
Abstract The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA+U scheme, respectively. Within the GGA+U approach, the calculated intercalation voltage (ranges from 4.5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 eV.
|
|
Published: 23 December 2014
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
73.63.Bd
|
(Nanocrystalline materials)
|
|
|
|
|
[1] Kalyani P et al 1999 J. Power. Sources 80 103 [2] Rossouw M H and Thackeray M M 1991 Mater. Res. Bull. 26 463 [3] Robertson A D and Bruce P G 2002 Chem. Commun. 23 2790 [4] Paik Y et al 2002 Chem. Mater. 14 5109 [5] Wang J M et al 2011 Solid State Commun. 151 234 [6] Ouyang C Y et al 2005 Chin. Phys. Lett. 22 489 [7] Anisimov V I et al 1993 Phys. Rev. B 48 116929 [8] Kresse G and Hafner 1993 Phys. Rev. B 47 558 [9] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [10] Bl?chl P E 1994 Phys. Rev. B 50 17953 [11] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [12] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181 [13] Trimarchi G and Binggeli N 2005 Phys. Rev. B 71 035101 [14] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901 [15] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978 [16] Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106 [17] Strobel P and Lambertandron B 1988 J. Solid State Chem. 75 90 [18] Okamoto Y 2012 J. Electrochem. Soc. 159 A152 [19] Aydinol M K, Kohn A F, Ceder G, Cho K and Joannopoulos 1997 Phys. Rev. B 56 1354 [20] Nakamura K, Hirano H, Michihiro Y and Moriga T 2010 Solid State Ionics 181 1359 [21] Song X Q, Ma J F and Chen R F 2000 J. Inorg. Mater. 15 33 (in Chinese) [22] Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Ven A V D, Srinivasan V, Kostecki R and Ceder G 2010 J. Phys. Chem. Lett. 1 1176 [23] Nakamura K, Ohno H, Okamura K, Michihiro Y, Nakabayashi I and Kanashiro T 2000 Solid State Ionics 135 143 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|