FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers |
LI Shi-Guo1**, GONG Qian2, CAO Chun-Fang2, WANG Xin-Zhong1, YAN Jin-Yi2, WANG Hai-Long3 |
1Department of Electronic Communication and Technology, Shenzhen Institute of Information Technology, Shenzhen 518172 2State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences, Shanghai 200050 3Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165
|
|
Cite this article: |
LI Shi-Guo, GONG Qian, CAO Chun-Fang et al 2015 Chin. Phys. Lett. 32 014208 |
|
|
Abstract We report on the measurement of junction temperature of the InAs/InP(100) quantum dot lasers working in the 1.55 μm wavelength region. The measurement is based on analyzing the temperature induced mode shift of the Fabry–Perot cavity. Under pulsed operation mode, more than 20°C junction temperature rise is measured for the quantum-dot (QD) laser when the duty cycle is increased from 1% to 95%. For a reference quantum well laser, the junction temperature rise is obtained as only around 3°C. The large junction temperature rise might be a crucial factor to improve the performance of QD lasers.
|
|
Published: 23 December 2014
|
|
|
|
|
|
[1] Kim J S, Lee J H, Hong S U, Han W S, Kwack H S, Lee C W and Oh D K 2004 IEEE Photon. Technol. Lett. 16 1607 [2] Jang J W, Ryun S H, Lee S H, Lee I C, Jeong W G, Stevenson R, Daniel Dapkus P, Kim N J, Hwang M and Lee S D 2004 Appl. Phys. Lett. 85 3675 [3] Anantathanasarn S, N?tzel R, Van Veldhoven P J, Van Otten F W M, Barbarin Y, Servanton G, De Vries T, Smalbrugge E, Geluk E J, Eijkemans T J, Bente E A J M, Oei Y S, Smit M K and Wolter J H 2006 Appl. Phys. Lett. 89 073115 [4] Poole P J, Kaminska K, Barrios P, Lu Z and Liu J 2009 J. Cryst. Growth 311 1482 [5] Lelarge F, Rousseau B, Dagens B, Poingt F, Pommereau F and Accard A 2005 IEEE Photon. Technol. Lett. 17 1369 [6] Li S G, Gong Q, Lao Y F, He K, Li J, Zhang Y G, Feng S L and Wang H L 2008 Appl. Phys. Lett. 93 111109 [7] Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702 [8] Kim H D, Joeng W G, Lee J H, Yim J S, Lee D, Stevenson R, Dapkus P D, Jang J W and Pyun S H 2005 Appl. Phys. Lett. 87 083110 [9] Alghoraibi I, Rohel T, Piron R, Bertru N, Paranthoen C, Elias G, Nakkar A, Folliot H, Le corre A and Loualiche S 2007 Appl. Phys. Lett. 91 261105 [10] Saito H, Nishi K and Sugou S 2001 Appl. Phys. Lett. 78 267 [11] Xiao X, Lu Y F, Yu F Q and Jin L 2013 Chin. Phys. B 22 077802 [12] Han Y R, Kyong H H, Jung H C, Ok H N and Yong J P 2005 Appl. Phys. Lett. 87 093506 [13] Nan K J, Zhang Y G, He Y J and Li A Z 2002 Semicond. Sci. Technol. 8 135 [14] Nan K J, Zhang Y G, Chen Y Q and Li A Z 2002 Semicond. Sci. Technol. 8 86 [15] Zhu C, Zhang Y G, Li A Z and Zheng Y L 2005 Semicond. Sci. Technol. 20 563 [16] Li S G, Gong Q, Lao Y F, Yang H D, Gao S, Li J, Zhang Y G, Feng S L and Wang H L 2009 Appl. Phys. Lett. 95 251111 [17] Chusseau L, Alibert C, Martin P, Mostafa Skouri E and Bissessur H 1996 Appl. Phys. Lett. 69 1334 [18] Bisaro R, Merenda P and Pearsall T P 1979 Appl. Phys. Lett. 34 100 [19] Li S G, Gong Q, Cao C F, Wang X Z and Wang H L 2012 Physica E 44 1983 [20] Carlin J F, Syrbu A V, Berseth C A, Behrend J, Rudra A and Kapon E 1997 Appl. Phys. Lett. 71 13 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|