GENERAL |
|
|
|
|
Change of State of a Dynamical Unit in the Transition of Coherence |
YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian** |
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
|
|
Cite this article: |
YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun et al 2015 Chin. Phys. Lett. 32 010502 |
|
|
Abstract The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.
|
|
Published: 23 December 2014
|
|
PACS: |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Ra
|
(Coupled map lattices)
|
|
|
|
|
[1] Omelchenko I, Maistrenko Y, H ?vel P and Sch?ll E 2011 Phys. Rev. Lett. 106 234102 [2] Sun X J and Lu Q S 2014 Chin. Phys. Lett. 31 020502 [3] Wang L, Zhang P M, Liang P J and Qiu Y H 2014 Chin. Phys. Lett. 31 070501 [4] Wei D Q, Luo X S, Chen H B and Zhang B 2011 Chin. Phys. Lett. 28 110501 [5] Cheng X C, Yang K L and Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese) [6] Acebrón J A, Bonilla L L, Pérez Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137 [7] Gómez-Garde?es J, Moreno Y and Arenas A 2007 Phys. Rev. Lett. 98 034101 [8] Kuramoto Y and Battogtokh D 2002 Nonlinear Phenom. Complex Syst. 5 380 [9] Omel'chenko O E, Maistrenko Y L and Tass P A 2008 Phys. Rev. Lett. 100 044105 [10] Omelchenko I, Riemenschneider B, H?vel P, Maistrenko Y and Sch?ll E 2012 Phys. Rev. E 85 026212 [11] Tinsley M R, Nkomo S and Showalter K 2012 Nat. Phys. 8 662 [12] Hagerstrom A M, Murphy T E, Roy R, H?vel P, Omelchenko I and Sch?ll E 2012 Nat. Phys. 8 658 [13] Panaggio M J and Abrams D M 2013 Phys. Rev. Lett. 110 094102 [14] Omelchenko I, Omel'chenko O E, H?vel P and Sch?ll E 2013 Phys. Rev. Lett. 110 224101 [15] Larger L, Penkovsky B and Maistrenko Y 2013 Phys. Rev. Lett. 111 054103 [16] Nkomo S, Tinsley M R and Showalter K 2013 Phys. Rev. Lett. 110 244102 [17] Wolfrum M and Omel'chenko O E 2011 Phys. Rev. E 84 015201 [18] Bordyugov G, Pikovsky A and Rosenblum M 2010 Phys. Rev. E 82 035205 [19] Laing C R 2010 Phys. Rev. E 81 066221 [20] Martens E A 2010 Phys. Rev. E 82 016216 [21] Omel'chenko O E, Wolfrum M and Maistrenko Y L 2010 Phys. Rev. E 81 065201 [22] Wildie M and Shanahan M 2012 Chaos 22 043131 [23] Gu C, St-Yves G and Davidsen J 2013 Phys. Rev. Lett. 111 134101 [24] Sethia G C, Sen A and Johnston G L 2013 Phys. Rev. E 88 042917 [25] Zhu Y, Li Y, Zhang M and Yang J 2012 Europhys. Lett. 97 10009 [26] Zhu Y, Zheng Z G and Yang J Z 2014 Phys. Rev. E 89 022914 [27] Zhu Y, Zheng Z G and Yang J Z 2013 Chin. Phys. B 22 100505 [28] Wang S, Yu Y G, Wang H and Ahmed R 2014 Chin. Phys. B 23 040502 [29] Chen F, Xia L and Li C G 2012 Chin. Phys. Lett. 29 070501 [30] Zang H Yan, Min L Q, Zhao G and Chen G R 2013 Chin. Phys. Lett. 30 040502 [31] Wang W, Liu Z H and Hu B 2000 Phys. Rev. Lett. 84 2610 [32] Fan C L, Jin N D, Chen X T and Gao Z K 2013 Chin. Phys. Lett. 30 090501 [33] Yang Z L, Gao Y, Gao Y T and Zhang J 2009 Chin. Phys. Lett. 26 060506 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|