Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 010502    DOI: 10.1088/0256-307X/32/1/010502
GENERAL |
Change of State of a Dynamical Unit in the Transition of Coherence
YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian**
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119
Cite this article:   
YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun et al  2015 Chin. Phys. Lett. 32 010502
Download: PDF(576KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The change of state of one map in the network of nonlocal coupled logistic maps at the transition of coherence is studied. With the increase of coupling strength, the network dynamics transits from the incoherent state into the coherent state. In the process, the iteration of the map first changes from chaos to period state, then from periodic to chaotic state again. For the periodic doubling bifurcations, similar to an isolated map, the largest Lyapunov exponent tends to zero from a negative value. However, the states of coupled maps exhibit complex behavior rather than converge to a few fixed values. The behavior brings a new chimera state of coupled logistic maps. The bifurcation diagram is identical to the phase order of maps iterations. For the bifurcation between 1-band and multi-band chaos, the symmetry of chaotic bands emerges and the transition of the order of iteration direction occurs.
Published: 23 December 2014
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Ra (Coupled map lattices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/010502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/010502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yan-Jin
DU Ru-Hai
WANG Sheng-Jun
JIN Tao
QU Shi-Xian
[1] Omelchenko I, Maistrenko Y, H ?vel P and Sch?ll E 2011 Phys. Rev. Lett. 106 234102
[2] Sun X J and Lu Q S 2014 Chin. Phys. Lett. 31 020502
[3] Wang L, Zhang P M, Liang P J and Qiu Y H 2014 Chin. Phys. Lett. 31 070501
[4] Wei D Q, Luo X S, Chen H B and Zhang B 2011 Chin. Phys. Lett. 28 110501
[5] Cheng X C, Yang K L and Qu S X 2014 Acta Phys. Sin. 63 140505 (in Chinese)
[6] Acebrón J A, Bonilla L L, Pérez Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[7] Gómez-Garde?es J, Moreno Y and Arenas A 2007 Phys. Rev. Lett. 98 034101
[8] Kuramoto Y and Battogtokh D 2002 Nonlinear Phenom. Complex Syst. 5 380
[9] Omel'chenko O E, Maistrenko Y L and Tass P A 2008 Phys. Rev. Lett. 100 044105
[10] Omelchenko I, Riemenschneider B, H?vel P, Maistrenko Y and Sch?ll E 2012 Phys. Rev. E 85 026212
[11] Tinsley M R, Nkomo S and Showalter K 2012 Nat. Phys. 8 662
[12] Hagerstrom A M, Murphy T E, Roy R, H?vel P, Omelchenko I and Sch?ll E 2012 Nat. Phys. 8 658
[13] Panaggio M J and Abrams D M 2013 Phys. Rev. Lett. 110 094102
[14] Omelchenko I, Omel'chenko O E, H?vel P and Sch?ll E 2013 Phys. Rev. Lett. 110 224101
[15] Larger L, Penkovsky B and Maistrenko Y 2013 Phys. Rev. Lett. 111 054103
[16] Nkomo S, Tinsley M R and Showalter K 2013 Phys. Rev. Lett. 110 244102
[17] Wolfrum M and Omel'chenko O E 2011 Phys. Rev. E 84 015201
[18] Bordyugov G, Pikovsky A and Rosenblum M 2010 Phys. Rev. E 82 035205
[19] Laing C R 2010 Phys. Rev. E 81 066221
[20] Martens E A 2010 Phys. Rev. E 82 016216
[21] Omel'chenko O E, Wolfrum M and Maistrenko Y L 2010 Phys. Rev. E 81 065201
[22] Wildie M and Shanahan M 2012 Chaos 22 043131
[23] Gu C, St-Yves G and Davidsen J 2013 Phys. Rev. Lett. 111 134101
[24] Sethia G C, Sen A and Johnston G L 2013 Phys. Rev. E 88 042917
[25] Zhu Y, Li Y, Zhang M and Yang J 2012 Europhys. Lett. 97 10009
[26] Zhu Y, Zheng Z G and Yang J Z 2014 Phys. Rev. E 89 022914
[27] Zhu Y, Zheng Z G and Yang J Z 2013 Chin. Phys. B 22 100505
[28] Wang S, Yu Y G, Wang H and Ahmed R 2014 Chin. Phys. B 23 040502
[29] Chen F, Xia L and Li C G 2012 Chin. Phys. Lett. 29 070501
[30] Zang H Yan, Min L Q, Zhao G and Chen G R 2013 Chin. Phys. Lett. 30 040502
[31] Wang W, Liu Z H and Hu B 2000 Phys. Rev. Lett. 84 2610
[32] Fan C L, Jin N D, Chen X T and Gao Z K 2013 Chin. Phys. Lett. 30 090501
[33] Yang Z L, Gao Y, Gao Y T and Zhang J 2009 Chin. Phys. Lett. 26 060506
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 010502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 010502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 010502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 010502
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 010502
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 010502
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 010502
[8] SONG Xin-Fang, WANG Wen-Yuan. Target Inactivation and Recovery in Two-Layer Networks[J]. Chin. Phys. Lett., 2015, 32(11): 010502
[9] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 010502
[10] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 010502
[11] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 010502
[12] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 010502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 010502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 010502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 010502
Viewed
Full text


Abstract