Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 010303    DOI: 10.1088/0256-307X/32/1/010303
GENERAL |
Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas
ZHANG Xiu-Ming**, TIAN Chi
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
ZHANG Xiu-Ming, TIAN Chi 2015 Chin. Phys. Lett. 32 010303
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the generalized uncertainty principle (GUP), the critical temperature and the Helmholtz free energy of Bose–Einstein condensation (BEC) in the relativistic ideal Bose gas are investigated. At the non-relativistic limit and the ultra-relativistic limit, we calculate the analytical form of the shifts of the critical temperature and the Helmholtz free energy caused by weak quantum gravitational effects. The exact numerical results of these shifts are obtained. Quantum gravity effects lift the critical temperature of BEC. By measuring the shift of the critical temperature, we can constrain the deformation parameter β0. Furthermore, at lower densities, omitting quantum gravitational effects may lead to a metastable state while at sufficiently high densities, quantum gravitational effects tend to make BEC unstable. Using the numerical methods, the stable-unstable transition temperature is found.
Published: 23 December 2014
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  04.60.Bc (Phenomenology of quantum gravity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/010303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/010303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiu-Ming
TIAN Chi
[1] Amelino-Camelia G 2002 Mod. Phys. Lett. A 17 899
[2] Amelino-Camelia G 2013 Living Rev. Relativ. 16 5
[3] Arkani-Hamed N, Dimopoulos S and Dvali G 1999 Phys. Rev. D 59 086004
[4] Amelino-Camelia G, Ellis J, Mavromatos N E, Nanopoulos D V and Sarkar S 1998 Nature 393 763
[5] Biller S D et al 1999 Phys. Rev. Lett. 83 2108
[6] Kifune T 1999 Astrophys. J. Lett. 518 L21
[7] Protheroe R J and Meyer H 2000 Phys. Lett. B 493 1
[8] Amelino-Camelia G and Piran T 2001 Phys. Rev. D 64 036005
[9] Jacobson T, Liberati S and Mattingly D 2002 Phys. Rev. D 66 081302
[10] Amelino-Camelia G 2002 Phys. Lett. B 528 181
[11] Alfaro J, Morales-Tecotl H A and Urrutial L F 2000 Phys. Rev. Lett. 84 2318
[12] Jacob U and Piran T 2007 Nat. Phys. 3 87
[13] Sprenger M, Nicolini P and Bleicher M 2012 Eur. J. Phys. 33 853
[14] Amelino-Camelia G 1999 Nature 398 216
[15] Ng Y J and Dam H V 2000 Found. Phys. 30 795
[16] Amelino-Camelia G 2000 Phys. Rev. D 62 024015
[17] Amelino-Camelia G and L?mmerzahl C 2004 Class. Quantum Grav. 21 899
[18] Hogan C J 2012 Phys. Rev. D 85 064007
[19] Amelino-Camelia G, Lammerzahl C, Mercati F and Tino G M 2009 Phys. Rev. Lett. 103 171302
[20] Mercati F et al 2010 Class. Quantum Grav. 27 215003
[21] Briscese F, Grether M and Llano D M 2012 Europhys. Lett. 98 60001
[22] Briscese F 2012 Phys. Lett. B 718 214
[23] Castellanos E and Rivas J I 2014 arXiv:1406.1461[gr-qc]
[24] Castellanos E 2013 Europhys. Lett. 103 40004
[25] Castellanos E and Laemmerzahl C 2012 Mod. Phys. Lett. A 27 1250181
[26] Castellanos E and Laemmerzahl C 2014 Phys. Lett. B 731 1
[27] Garay L J 1995 Int. J. Mod. Phys. A 10 145
[28] Scardigli F 1999 Phys. Lett. B 452 39
[29] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108
[30] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028
[31] Fityo T V 2008 Phys. Lett. A 372 5872
[32] Wamg P, Yang H T and Zhang X M 2010 J. High Energy Phys. 2010 043
[33] Wang P, Yang H T and Zhang X M 2012 Phys. Lett. B 718 265
[34] Brau F and Buisseret F 2006 Phys. Rev. D 74 036002
[35] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301
[36] Ure?a López L A 2009 J. Cosmol. Astropart. Phys. 01 014
[37] Grether M, Llano M D, Ramírez S and Rojo O 2008 Int. J. Mod. Phys. B 22 4367
[38] Vakili B and Gorji M A 2012 J. Stat. Mech. 10 P10013
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 010303
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 010303
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 010303
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 010303
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 010303
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 010303
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 010303
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 010303
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 010303
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 010303
[11] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 010303
[12] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 010303
[13] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 010303
[14] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 010303
[15] YU Zi-Fa, ZHANG Ai-Xia, XUE Ju-Kui. Coherent Destruction of Tunneling of Dipolar Bosonic Gas[J]. Chin. Phys. Lett., 2014, 31(1): 010303
Viewed
Full text


Abstract