CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation |
WANG Fang-Fang1,2, WEI Peng-Yue2, DING Xue-Yong3, XING Xian-Ran1, CHEN Xing-Qiu2** |
1Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 110083 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 3School of Materials and Metallurgy, Northeastern University, Shenyang 110004
|
|
Cite this article: |
WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong et al 2014 Chin. Phys. Lett. 31 027402 |
|
|
Abstract By means of hybrid density functional theory, we interpret the stability mechanism of the tetragonal CuO phase, which was synthesized using the pulsed laser deposition. The orbital ordering resulted from the crystal field splitting is found to be favorable for the d9 electronic configuration of the Cu2+ ion, yielding two possible metastable tetragonal phases (c/a < 1 and c/a > 1) of CuO. A detailed comparison is also performed with the ideal rock-salt compounds CoO and NiO.
|
|
Received: 28 November 2013
Published: 28 February 2014
|
|
PACS: |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.72.-h
|
(Cuprate superconductors)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
|
|
|
[1] Wells A F 1962 Structural Inorganic Chemistry 3rd edn (Oxford: Oxford University Press) p 457 [2] Forsyth J B and Hull S 1991 J. Phys.: Condens. Matter 3 5257 [3] Filippetti A and Fiorentini V 2005 Phys. Rev. Lett. 95 086405 [4] Siemons W, Koster G, Blank D H A, Hammond R H, Geballe T H and Beasley M R 2009 Phys. Rev. B 79 195122 [5] Chen X Q, Fu C L, Franchini C and Podloucky R 2009 Phys. Rev. B 80 094527 [6] Franchini C, Chen X Q and Podloucky R 2011 J. Phys.: Condens. Matter 23 045004 [7] Yang B X, Thurston T R, Tranquada J M and Shirane G 1989 Phys. Rev. B 39 4343 [8] Grant P M 2008 J. Phys.: Conf. Ser. 129 012042 [9] Becke A D 1993 J. Chem. Phys. 98 1372 [10] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106 [11] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [12] Paier J, Hirschl R, Marsman M and Kresse G 2005 J. Chem. Phys. 122 234102 [13] Franchini C, Bayer V, Podloucky R, Paier J and Kresse G 2005 Phys. Rev. B 72 045132 [14] Franchini C, Podloucky R, Paier J, Marsman M and Kresse G 2007 Phys. Rev. B 75 195128 [15] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200 [16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [17] Himmetoglu B, Wentzcovitch R M and Cococcioni M 2011 Phys. Rev. B 84 115108 [18] Jauch W, Reehuis M, Bleif H J, Kubanek F and Pattison P 2001 Phys. Rev. B 64 052102 [19] Fender B E F, Jacobson A J and Wedgwood F A 1968 J. Chem. Phys. 48 990 [20] Tombs N C and Rooksby H P 1950 Nature 165 442 [21] Barrett C A and Evans E B 1964 J. Am. Ceram. Soc. 47 533 [22] van Elp J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A, de Groot F M F and Turner T S 1991 Phys. Rev. B 44 6090 [23] Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|