Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 026802    DOI: 10.1088/0256-307X/31/2/026802
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Surface Morphology of GaAs/In0.3Ga0.7As in an Elastic Field of Static Point Defects
WU Ping-Ping, GAO Fang-Liang, ZHANG Shu-Guang**, LI Guo-Qiang**
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641
Cite this article:   
WU Ping-Ping, GAO Fang-Liang, ZHANG Shu-Guang et al  2014 Chin. Phys. Lett. 31 026802
Download: PDF(887KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The surface morphology InGaAs layers with In composition of 0.3 on GaAs (001) substrates are simulated by the phase field method. We investigate the influence of the strain field induced by static point defects on surface morphology of the InGaAs thin film. Our simulation demonstrates that the rms roughness of the thin film surface is strongly dependent on the density and magnitude of the randomly distributed point defects. Point defects near the thin film surface can produce a relatively large change of the surface morphology. The influences of thin film thickness on the surface morphology with different defect distributions are illustrated in the simulations. Additionally, a combination of experiment and theory is used to examine the influence of the defect density and magnitude on the surface morphology and roughness.
Received: 07 June 2013      Published: 28 February 2014
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.Aa (Theory and models of film growth)  
  68.55.jd (Thickness)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/026802       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/026802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ping-Ping
GAO Fang-Liang
ZHANG Shu-Guang
LI Guo-Qiang
[1] King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183516
[2] Guter W, Sch?ne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W and Dimroth F 2009 Appl. Phys. Lett. 94 223504
[3] Wiemer M, Sabnis V and Yuen H 2011 Proc. SPIE 8108 810804
[4] Luque A 2011 J. Appl. Phys. 110 031301
[5] Kurtz S R, Myers D and Olson J M 1997 IEEE The 26th Photovoltaic Specialists Conference (Anaheim 29 September–03 October 1997) p 875
[6] Friedman D J, Geisz J F, Norman A G, Wanlass M W and Kurtz S R 2006 The 4th World Conference on Photovoltaic Energy Conversion (Hawaii 7–12 May 2006) p 598
[7] Geisz J F, Kurtz S R, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T, Romero M J, Norman A G and Jone K M 2008 IEEE The 33rd Photovoltaic Specialists Conference (San Diego 11–16 May 2008) p 1
[8] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley)
[9] Pillai M R, Kim S S, Ho S T and Barnett S A 2000 J. Vac. Sci. Technol. B 18 1232
[10] Matthews J W and Blakeslee A E 1976 J. Cryst. Growth 32 265
[11] Millunchick J M and Barnett S A 1994 Appl. Phys. Lett. 65 1136
[12] Ashcroft N W and Mermin N D 1976 Solid State Physics (Orlando: Harcourt)
[13] Valtuena J F, Sacedon A, Alvarez A L, Izputa I, Calle F, Calleja E, MacPherson G, Goodhew P J, Pacheco F J, Garcia R and Molina S I 1997 J. Cryst. Growth 182 281
[14] Haupt M, Kohler K, Ganser P, Emminger S, Muller S and Rothemund W 1996 Appl. Phys. Lett. 69 412
[15] Ren Y Y, Xu B, Wang Z G, Liu M and Long S B 2007 Chin. Phys. Lett. 24 2689
[16] Takano Y, Kobayashi K, Iwahori H, Kuroyanagi N, Kuwahara K, Fuke S and Shirakata S 2002 Appl. Phys. Lett. 80 2054
[17] An Y P, Yang H, Mei T, Wang Y D, Teng J H and Xu C D 2010 Chin. Phys. Lett. 27 017302
[18] Cahn J W and Hilliard J E 1958 J. Chem. Phys. 28 258
[19] Khachaturyan A G 1983 Theory of Structural Transformations in Solids (New York: Wiley)
[20] Wu P P, Gao F L, Zhang K H L and Li G Q 2013 RSC Adv. 3 3973
[21] Chen L Q and Shen J 1998 Comput. Phys. Commun. 108 147
[22] Kurilo I V and Guba S K 2011 Inorgan. Mater. 47 819
[23] Anan T, Nishi K and Sugou S 1992 Appl. Phys. Lett. 60 3159
[24] Chuang S L 1995 Physics of Optoelectronics Devices (New York: Wiley)
[25] Mariager S O, Lauridsen S L, Dohn A, Bovet N, S ?rensen C B, Schleputz C M, Willmott P R and Feidenhansl R 2009 J. Appl. Crystallogr. 42 369
[26] Pelliccione M and Lu T M 2007 Evolution of Thin Film Morphology Modeling and Simulations (Berlin: Springer)
[27] Medel-Ruiz C I, Lastras-Martinez A and Balderas-Navarro R E 2003 Phys. Status Solidi C 0 893
[28] Chokshi N, Bouville M and Millunchick J M 2002 J. Cryst. Growth 236 563
Related articles from Frontiers Journals
[1] Jianguo Zhao, Kai Chen, Maogao Gong, Wenxiao Hu, Bin Liu, Tao Tao, Yu Yan, Zili Xie, Yuanyuan Li, Jianhua Chang, Xiaoxuan Wang, Qiannan Cui, Chunxiang Xu, Rong Zhang, and Youdou Zheng. Epitaxial Growth and Characteristics of Nonpolar $a$-Plane InGaN Films with Blue-Green-Red Emission and Entire In Content Range[J]. Chin. Phys. Lett., 2022, 39(4): 026802
[2] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 026802
[3] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 026802
[4] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 026802
[5] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 026802
[6] Qiong Wu , Xin Wu , Yue-Shun Zhao , and Shifeng Zhao. Design of Lead-Free Films with High Energy Storage Performance via Inserting a Single Perovskite into Bi$_{4}$Ti$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2020, 37(11): 026802
[7] Ze-Rui Wang, Chen-Xiao Zhao, Guan-Yong Wang, Jin Qin, Bing Xia, Bo Yang, Dan-dan Guan, Shi-Yong Wang, Hao Zheng, Yao-Yi Li, Can-hua Liu, and Jin-Feng Jia. Controllable Modulation to Quantum Well States on $\beta$-Sn Islands[J]. Chin. Phys. Lett., 2020, 37(9): 026802
[8] Zi-Cheng Ma, Nan Gao, Shao-Heng Cheng, Jun-Song Liu, Ming-Chao Yang, Peng Wang, Zhi-Yuan Feng, Qi-Liang Wang, Hong-Dong Li. Wettability and Surface Energy of Hydrogen- and Oxygen-Terminated Diamond Films[J]. Chin. Phys. Lett., 2020, 37(4): 026802
[9] Jian Zhang, Shengxi Zhang, Xiaofang Qiu, Yan Wu, Qiang Sun, Jin Zou, Tianxin Li, Pingping Chen. MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs[J]. Chin. Phys. Lett., 2020, 37(3): 026802
[10] Yang-Yang Xu, Yu Wang, Ai-Yun Liu, Wang-Zhou Shi, Gu-Jin Hu, Shi-Min Li, Hui-Yong Deng, Ning Dai. Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films[J]. Chin. Phys. Lett., 2020, 37(2): 026802
[11] Jia-Li Wu, Run-Ze Qi, Qiu-Shi Huang, Yu-Fei Feng, Zhan-Shan Wang, Zi-Hua Xin. Stress, Roughness and Reflectivity Properties of Sputter-Deposited B$_{4}$C Coatings for X-Ray Mirrors[J]. Chin. Phys. Lett., 2019, 36(12): 026802
[12] Han Xu, Zhen-Lin Luo, Chang-Gan Zeng, Chen Gao. Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer[J]. Chin. Phys. Lett., 2019, 36(7): 026802
[13] Yi-Feng Hu, Xuan Guo, Qing-Qian Qiu, Tian-Shu Lai. Characteristics of Sb$_{6}$Te$_{4}$/VO$_{2}$ Multilayer Thin Films for Good Stability and Ultrafast Speed Applied in Phase Change Memory[J]. Chin. Phys. Lett., 2018, 35(9): 026802
[14] Yi Gu, Hui-Jun Zheng, Xi-Ren Chen, Jia-Ming Li, Tian-Xiao Nie, Xu-Feng Kou. Influence of Surface Structures on Quality of CdTe(100) Thin Films Grown on GaAs(100) Substrates[J]. Chin. Phys. Lett., 2018, 35(8): 026802
[15] Lu Dong, Guan-Yong Wang, Zhen Zhu, Chen-Xiao Zhao, Xin-Yi Yang, Ai-Min Li, Jing-Lei Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Mao-Hai Xie, Jin-Feng Jia. Charge Density Wave States in 2H-MoTe$_{2}$ Revealed by Scanning Tunneling Microscopy[J]. Chin. Phys. Lett., 2018, 35(6): 026802
Viewed
Full text


Abstract