CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer |
ZHOU Xu-Liang, PAN Jiao-Qing**, YU Hong-Yan, LI Shi-Yan, WANG Bao-Jun, BIAN Jing, WANG Wei |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
ZHOU Xu-Liang, PAN Jiao-Qing, YU Hong-Yan et al 2014 Chin. Phys. Lett. 31 128101 |
|
|
Abstract High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm?2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.
|
|
Published: 12 January 2015
|
|
PACS: |
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
|
|
|
[1] Beeler R, Mathews J, Weng C, Tolle J, Roucka R, Chizmeshya A V G, Juday R, Bagchi S, Menéndez J and Kouvetakis J 2010 Sol. Energy Mater. Sol. Cells 94 2362 [2] Lazzrini L, Nasi L, Salviati G, Fregonara C Z, Li Y, Giling L J, Hardingham C and Holt D B 2000 Micron 31 217 [3] King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183516 [4] Sandall I, Ng J S, David J P R, Tan C H, Wang T and Liu H 2012 Opt. Express 20 10446 [5] Banerjee S, Halder N and Chakrabarti S 2012 Phys. Status Solidi C 9 322 [6] Liu H, Wang T, Hogg Q, Tutu F, Francesca P and Seeds A 2011 Nat. Photon. 5 416 [7] Wang T, Liu H, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381 [8] Brammertz G, Caymax M, Meuris M, Heyns M, Mols Y, Degroote S and Leys M 2008 Thin Solid Films 517 148 [9] Choi D, Harris J S, Kim E, McIntyre P C, Cagnon J and Stemmer S 2009 J. Cryst. Growth 311 1962 [10] Takagi S and Takenaka M 2011 IEEE Int. Symp. on VLSI Technol. Syst. Appl. p 1 [11] Yokoyama M, Kim S H, Zhang R, Taoka N, Urabe Y, Maeda T, Takagi H, Yasuda T, Yamada H, Ichikawa O, Fukuhara N, Hata M, Sugiyama M, Nakano Y, Takenaka M and Takagi S 2011 IEEE Symp. on VLSI Technol. p 60 [12] Dupuis R D, Bean J C, Brown J M, Macrander A T, Miller R C and Hopkins L C 1987 J. Electron. Mater. 16 69 [13] Li Y and Giling L J 1996 J. Cryst. Growth 163 203 [14] Bordel D, Guimard D, Rajesh M, Nishioka M, Augendre E, Clavelier L and Arakawa Y 2010 Appl. Phys. Lett. 96 043101 [15] Xu Q, Hsu J W P, Carlin J A, Sieg R M, Boeckl J J and Ringel S A 1999 Appl. Phys. Lett. 75 2111 [16] Knuuttila L, Lankinen A, Likonen J, Lipsanen H, Lu X, McNally P, Riikonen J and Tuomi T 2005 Jpn. J. Appl. Phys. 44 7777 [17] Attolini G, Bocchi C, Franzosi P, Korytar D and Pelosi C 1995 J. Phys. D 28 A129 [18] Stirland D J 1988 Appl. Phys. Lett. 53 2432 [19] Li Y, Lazzarini L, Giling L J and Salviati G 1994 J. Appl. Phys. 76 5748 [20] Ting S M and Fitzgrald E A 2000 J. Appl. Phys. 87 2618 [21] Rajesh M, Bordel D, Kawaguchi K, Faure S, Nishioka M, Augendre E, Clavelier L, Guimard D and Arakawa Y 2011 J. Cryst. Growth 315 114 [22] Yu H W, Chang E Y, Yamamoto Y, Tillack B, Wang W C, Kuo C I, Wong Y Y and Nguyen H Q 2011 Appl. Phys. Lett. 99 171908 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|