Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 117201    DOI: 10.1088/0256-307X/31/11/117201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Detection of Ordered Molecules Adsorbed on Graphene: a Theoretical Study
WANG Yong1,2, ZHANG Xue-Qing3, LI Hui1**
1Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061
2School of Physics and Technology, University of Jinan, Jinan 250022
3Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
Cite this article:   
WANG Yong, ZHANG Xue-Qing, LI Hui 2014 Chin. Phys. Lett. 31 117201
Download: PDF(665KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Graphene has been demonstrated to be able to detect individual gas molecules [Schedin et al. Nat. Mater. 6 (2007) 652], which has attracted a lot of sensor research activities. Here we report for the first time that graphene is capable of detecting the ordering degree of absorbed water molecules. The efficiency of doping varies from the degrees of molecular ordering. The simulated results show that the highly ordered water molecules contribute more to the doping effect, which reduces the conductance of the water/graphene system.
Published: 28 November 2014
PACS:  72.80.Rj (Fullerenes and related materials)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.50.-h (Electronic transport phenomena in thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/117201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/117201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yong
ZHANG Xue-Qing
LI Hui
[1] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Schedin, Geim A K, Morozov S V, Hill E W, Blake E P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[3] Adam S, Hwang E H, Galitski V M and Sarma S D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 18392
[4] Liu Y, Ao Z M, Wang T, Wang W B, Sheng K and Yu B 2011 Chin. Phys. Lett. 28 087303
[5] Lu H Y and Wang Q H 2008 Chin. Phys. Lett. 25 3746
[6] Pan H Z, Wang Y L, He K H, Wei M Z, Ou Y Y and Chen L 2013 Chin. Phys. B 22 067101
[7] Li M, Zhang J Y, Zhang Y and Wang T M 2012 Chin. Phys. B 21 067302
[8] Yavari F, Kritzinger C, Gaire C, Song L, Gullapalli H, Borca-Tasciuc T, Ajayan P M and Koratkar N 2010 Small 6 2535
[9] Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y and Lee Y H 2010 J. Am. Chem. Soc. 132 15603
[10] Berashevich T C J 2009 Phys. Rev. B 80 033404
[11] Jung I, Dikin D, Park S, Cai W, Mielke S L and Ruoff R S 2008 J. Phys. Chem. C 112 20264
[12] Topsakal M, Bagci V M K and Ciraci S 2010 Phys. Rev. B 81 205437
[13] Jang C, Adam S, Chen J H, Williams E D, Sarma S D and Fuhrer M S 2008 Phys. Rev. Lett. 101 146805
[14] Rao F B, Almumen H, Fan Z, Li W and Dong L X 2012 Nanotechnology 23 105501
[15] Valles C, Drummond C, Saadaoui H, Furtado C A, He M, Roubeau O, Ortolani L, Monthioux M and Penicaud A 2008 J. Am. Chem. Soc. 130 15802
[16] Wehling T O, Lichtenstein A I and Katsnelson M I 2008 Appl. Phys. Lett. 93 202110
[17] Zhang B and Cui T 2011 Appl. Phys. Lett. 98 073116
[18] Wehling T O, Novoselov K S, Morozov S V, Vdovin E E, Katsnelson M I, Geim A K and Lichtenstein A I 2008 Nano Lett. 8 173
[19] Chen F and Tao N 2009 Acc. Chem. Res. 42 429
[20] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[21] Dong J C and Li H 2013 NPG Asia Mater. 5 e56
[22] Dong J C and Li H 2012 J. Phys. Chem. C 116 17259
[23] Leenaerts O, Partoens B and Peeters F M 2008 Phys. Rev. B 77 125416
[24] Dong J C, Li H, Sun F W and Li Y F 2012 J. Phys. Chem. C 116 6762
[25] Cao P, Varghese J O, Xu K and Heath J R 2012 Nano Lett. 12 1459
Related articles from Frontiers Journals
[1] ZHOU Cheng, TU Tao, WANG Li, LI Hai-Ou, CAO Gang, GUO Guang-Can, GUO Guo-Ping. Transport through a Gate Tunable Graphene Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(11): 117201
[2] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 117201
[3] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 117201
[4] LU Hong-Yan, WANG Qiang-Hua. Electronic Raman Scattering in Graphene[J]. Chin. Phys. Lett., 2008, 25(10): 117201
[5] FANG Jing-Hai, LIU Li-Wei, KONG Wen-Jie, CAI Jian-Zhen, LU Li. Hopping Conductivity in a Single-Walled Carbon Nanotube Network[J]. Chin. Phys. Lett., 2006, 23(4): 117201
[6] LIU Jin-Ping, XIAO Cun-Ying, HUANG Xin-Tang. Electrical Resistance Measurement of an Individual Carbon Nanotube[J]. Chin. Phys. Lett., 2005, 22(2): 117201
[7] FENG Wei, ZHOU Feng, WANG Xiao-Gong, WAN Mei-Xiang, FUJII Akihiko, YOSHINO Katsumi. Water-Soluble Multi-Walled Nanotube and its Film Characteristics[J]. Chin. Phys. Lett., 2003, 20(5): 117201
[8] YANG Hua-Tong, DONG Jin-Ming, XING Ding-Yu. Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries[J]. Chin. Phys. Lett., 2001, 18(8): 117201
Viewed
Full text


Abstract