Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 114209    DOI: 10.1088/0256-307X/31/11/114209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Fourth-Order Spatial Correlation of Thermal Light
WEN Feng1, ZHANG Xun1**, XUE Xin-Xin2, SUN Jia1, SONG Jian-Ping1, ZHANG Yan-Peng1**
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education, and Shaanxi Key Lab of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049
2Huawei Technologies Co., Ltd. Bantian, Longgang District, Shenzhen 518129
Cite this article:   
WEN Feng, ZHANG Xun, XUE Xin-Xin et al  2014 Chin. Phys. Lett. 31 114209
Download: PDF(1825KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.
Published: 28 November 2014
PACS:  42.50.Ar  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.25.Kb (Coherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/114209       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/114209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEN Feng
ZHANG Xun
XUE Xin-Xin
SUN Jia
SONG Jian-Ping
ZHANG Yan-Peng
[1] Qian J et al 2005 Phys. Rev. A 72 052308
[2] Qian J et al 2007 Phys. Rev. A 75 032309
[3] Jin L, Niu Y and Gong S 2011 Phys. Rev. A 83 023410
[4] Hu A, Lee T E and Clark C W 2013 Phys. Rev. A 88 053627
[5] Schwarzkopf A et al 2013 Phys. Rev. A 88 061406
[6] Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford University Press)
[7] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[8] Ribeiro P H S et al 1994 Phys. Rev. A 49 4176
[9] Angelo M D et al 2001 Phys. Rev. Lett. 87 013602
[10] Bouwmeester D and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[11] Ou Z Y et al 1990 Phys. Rev. Lett. 65 321
[12] Rubin M H 1996 Phys. Rev. A 54 5349
[13] Klyshko D N 1988 Phys. Lett. A 128 133
[14] Klyshko D N 1988 Photons Nonlinear Optics (Florida: The Chemical Rubber Company Press)
[15] Malygin A A et al 1985 Dokl. Akad. Nauk. SSSR. 281 308
[16] Shih Y H et al 1994 Phys. Rev. A 50 23
[17] Brown R H and Twiss R 1956 Nature 178 1046
[18] Twiss R, Little A and Brown R H 1957 Nature 180 324
[19] Glauber R J 1963 Phys. Rev. 130 2529
[20] Scarcelli G et al 2006 Phys. Rev. Lett. 96 063602
[21] Bennink R S et al 2002 Phys. Rev. Lett. 89 113601
[22] Liu J and Shih Y 2009 Phys. Rev. A 79 023819
[23] Wen F et al 2014 J. Phys. Soc. Jpn. 83 104402
[24] Wen F et al 2014 J. Phys. Soc. Jpn. 83 104403
[25] Zhou Y et al 2010 Phys. Rev. A 81 043831
[26] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[27] Churnside J H 1982 J. Opt. Soc. Am. 72 1464
[28] Scully M O 1997 Quantum Optics (Cambridge: Cambridge University Press)
[29] Bai Y and Han S 2007 Phys. Rev. A 76 043828
[30] Cheng J and Han S 2004 Phys. Rev. Lett. 92 093903
Related articles from Frontiers Journals
[1] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 114209
[2] Jun Wen, Guan-Qiang Li. Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process[J]. Chin. Phys. Lett., 2018, 35(6): 114209
[3] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 114209
[4] HAN Bai-Ping, ZHENG Yu-Jun, HU Feng, FAN Qiu-Bo. Photon Statistical Properties of Single Terrylene Molecules in P-Terphenyl Crystals[J]. Chin. Phys. Lett., 2015, 32(06): 114209
[5] ZHANG Wei, DING Dong-Sheng, PAN Jian-Song, SHI Bao-Sen. Non-Classical Correlated Photon Pairs Generation via Cascade Transition of 5S1/2–5P3/2–5D5/2 in a Hot 85Rb Atomic Vapor[J]. Chin. Phys. Lett., 2014, 31(06): 114209
[6] ZHOU Tao, ZANG Xiao-Fei, XU Dan-Hua. Manipulating Single-Photon Transport Properties in an Asymmetrical Waveguide Coupled to a Whispering-Gallery Resonator Containing a Two-Level Atom[J]. Chin. Phys. Lett., 2014, 31(04): 114209
[7] WANG Chang-Chun, YUAN Hong-Chun, FAN Hong-Yi. Photon Counting for a Number State Passing through a Laser Channel[J]. Chin. Phys. Lett., 2012, 29(11): 114209
[8] LUO Kai-Hong, HUANG Bo-Qiang, ZHENG Wei-Mou, WU Ling-An. Nonlocal Imaging by Conditional Averaging of Random Reference Measurements[J]. Chin. Phys. Lett., 2012, 29(7): 114209
[9] ZHAO Sheng-Mei**, DING Jian, DONG Xiao-Liang, ZHENG Bao-Yu . Ghost Imaging Using Orbital Angular Momentum[J]. Chin. Phys. Lett., 2011, 28(12): 114209
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 114209
[11] LV Fan, SUN Fang-Wen**, ZOU Chang-Ling, HAN Zheng-Fu, GUO Guang-Can . Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference[J]. Chin. Phys. Lett., 2011, 28(2): 114209
[12] KIM Nam-Chol, LI Jian-Bo, LIU Shao-Ding, CHENG Mu-Tian, HAO Zhong-Hua. Influence of Excitation Pulse Width on the Second-Order Correlation Functions of the Exciton-Biexciton Emissions[J]. Chin. Phys. Lett., 2010, 27(3): 114209
[13] CHEN Wei, HE Yan, GUO Hao. Quantum Correlation Coefficients for Angular Coherent States[J]. Chin. Phys. Lett., 2009, 26(10): 114209
[14] M. R. Setare, Sh. Barzanjeh. Interaction of a Two-Level Atom with the Morse Potential in the Framework of Jaynes-Cummings Model[J]. Chin. Phys. Lett., 2009, 26(9): 114209
[15] ZHANG Yi-Xin, CANG Ji. Effects of Turbulent Aberrations on Probability Distribution of Orbital Angular Momentum for Optical Communication[J]. Chin. Phys. Lett., 2009, 26(7): 114209
Viewed
Full text


Abstract