CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Local Piezoresponse and Thermal Behavior of Ferroelastic Domains in Multiferroic BiFeO3 Thin Films by Scanning Piezo-Thermal Microscopy |
YU Hui-Zhu1,2, CHEN Hong-Guang3, XU Kun-Qi1,2, ZHAO Kun-Yu1, ZENG Hua-Rong1**, LI Guo-Rong1 |
1Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100039 3Shanghai Nanotechnology Promotion Center, Shanghai 200237
|
|
Cite this article: |
YU Hui-Zhu, CHEN Hong-Guang, XU Kun-Qi et al 2014 Chin. Phys. Lett. 31 107701 |
|
|
Abstract A dual probe, i.e., high resolution scanning piezo-thermal microscopy, is developed and employed to characterize the local piezoresponse and thermal behaviors of ferroelastic domains in multiferroic BiFeO3 thin films. Highly inhomogeneous piezoelectric responses are found in the thin film. A remarkably local thermal transformation across ferroelastic domain walls is clearly demonstrated by the quantitative 3Ω signals related to thermal conductivity. Different polarization oriented ferroelastic domains are found to exhibit different local thermal responses. The underlying mechanism is possibly associated with the inhomogeneous stress distribution across the ferroelastic domain walls, leading to different phonons scattering contributions in the BiFeO3 thin film.
|
|
Published: 31 October 2014
|
|
PACS: |
77.55.Nv
|
(Multiferroic/magnetoelectric films)
|
|
77.80.Dj
|
(Domain structure; hysteresis)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
|
|
|
[1] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21 [2] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229 [3] Vaz C A F, Hoffman J, Ahn C H and Ramesh R 2010 Adv. Mater. 22 2900 [4] Maksymovych P, Seidel J, Chu Y H, Wu P P, Baddorf A P, Chen L Q, Kalinin S V and Ramesh R 2011 Nano Lett. 11 1906 [5] Chen Z, Zou X, Ren W, You L, Huang C, Yang Y, Yang P, Wang J, Sritharan T, Bellaiche L and Chen L 2012 Phys. Rev. B 86 235125 [6] Peng X P and Liu Y 2011 Chin. Phys. Lett. 28 067702 [7] Zhao Y G and Chang H 2011 Chin. Phys. Lett. 28 067503 [8] Teague J R, Gerson R and James W J 1970 Solid State Commun. 8 1073 [9] Fischer P, Polomska M, Sosnowska I and Szymanski M 1980 J. Phys. C: Solid State Phys. 13 1931 [10] Hopkins P E, Adamo C, Ye L, Huey B D, Lee S R, Scholom D G and Ihlefeld J F 2013 Appl. Phys. Lett. 102 121903 [11] Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R and Kalinin S V 2009 Nat. Nanotechnol. 4 868 [12] Kalinin S V, Budai J D, Jesse S, Morozovska A N, Bokov A A and Ye Z G 2010 Phys. Rev. B 81 064107 [13] Fiege G B M, Altes A, Heiderhoff R and Balk L J 1999 J. Phys. D: Appl. Phys. 32 L13 [14] Altes A, Heiderhoff R and Balk L J 2004 J. Phys. D: Appl. Phys. 37 952 [15] Chung J, Kim K, Hwang G, Kwon O, Lee J S, Park S H and Choi Y K 2010 Rev. Sci. Instrum. 81 053701 [16] Sadat S, Tan A, Chua Y J and Reddy P 2010 Nano Lett. 10 2613 [17] McConney M E, Kulkarni D D, Jiang H, Bunning T J and Tsukruk V V 2012 Nano Lett. 12 1218 [18] Puyoo E, Grauby E, Rampnoux J M, Rouvière E and Dilhaire S 2010 Rev. Sci. Instrum. 81 073701 [19] Puyoo E, Grauby S, Rampnoux J M, Rouvière E and Dilhaire S 2011 J. Appl. Phys. 109 024302 [20] Cahill D G and Pohl R O 1987 Phys. Rev. B 35 4067 [21] Lubk A, Gemming S and Spaldin N 2009 Phys. Rev. B 80 104110 [22] Zhao K Y, Zeng H R, Zhang X W, Xu K Q, Yu H Z, Li G R and Luo H S 2014 Phys. Status Solidi 8 279 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|