Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 107302    DOI: 10.1088/0256-307X/31/10/107302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Perfect Spin-Filtering in 4H-TAHDI-Based Molecular Devices: the Effect of N-Substitution
WU Qiu-Hua1, ZHAO Peng1**, LIU De-Sheng2,3
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, Shandong University, Jinan 250100
3Department of Physics, Jining University, Qufu 273155
Cite this article:   
WU Qiu-Hua, ZHAO Peng, LIU De-Sheng 2014 Chin. Phys. Lett. 31 107302
Download: PDF(984KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the non-equilibrium Green's function formalism and spin-polarized density functional theory calculations, we investigate the spin transport properties of HDI and terahydrotetraazahexacene diimide (4H-TAHDI) with two ferromagnetic zigzag-edge graphene nanoribbon electrodes. Compared with HDI, four carbon atoms in the hexacene part of 4H-TAHDI are substituted by nitrogen atoms. The results show that the nitrogen substitution can improve significantly the spin-filtering performance and 4H-TAHDI can be used as a perfect spin filter. Our study indicates that suitable chemical substitution is a possible way to realize high-efficiency spin filters.
Published: 31 October 2014
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/107302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/107302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Qiu-Hua
ZHAO Peng
LIU De-Sheng
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Zeng J, Chen K Q and Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032
[3] Wu Q H, Zhao P and Liu D S 2014 Chin. Phys. Lett. 31 067302
[4] Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821
[5] Schmaus S, Bagrets A, Nahas Y, Yamada T K, Bork A, Bowen M, Beaurepaire E, Evers F and Wulfhekel W 2011 Nat. Nanotechnol. 6 185
[6] Sarkar S, Tarafder K, Oppeneer P M and Saha-Dasgupta T 2011 J. Mater. Chem. 21 13832
[7] Hao H, Zheng X H, Song L L, Wang R N and Zeng Z 2012 Phys. Rev. Lett. 108 017202
[8] Smirnov S and Grifoni M 2011 Phys. Rev. B 84 235314
[9] Smirnov S and Grifoni M 2012 Phys. Rev. B 85 195310
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[11] Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229
[12] Xia F, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotechnol. 6 179
[13] Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[14] Yazyev O V and Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
[15] Qiao Z Yang S A Wang B Yao Y and Niu Q 2011 Phys. Rev. B 84 035431
[16] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[17] Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408
[18] Koleini M, Paulsson M and Brandbyge M 2007 Phys. Rev. Lett. 98 197202
[19] Zhao P, Wu Q H, Liu D S and Chen G 2014 J. Chem. Phys. 140 044311
[20] Dong H, Wang C and Hu W 2010 Chem. Commun. 46 5211
[21] Pron A, Gawrys P, Zagorska M, Djurado D and Demadrille R 2010 Chem. Soc. Rev. 39 2577
[22] Würthner F and Stolte M 2011 Chem. Commun. 47 5109
[23] Katsuta S, Tanaka K, Maruya Y, Mori S, Masuo S, Okujima T, Uno H, Nakayama K and Yamada H 2011 Chem. Commun. 47 10112
[24] Maly K E 2011 Cryst. Growth Des. 11 5628
[25] Cai K, Yan Q and Zhao D 2012 Chem. Sci. 3 3175
[26] Cai K, Xie J, Yang X and Zhao D 2014 Org. Lett. 16 1852
[27] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104(R)
[28] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407(R)
[29] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[30] Soler J M, Artacho E, Gale J D, García, Junquera J, Ordejón P and S ánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[33] Buttiker M and Landauer R 1985 Phys. Rev. B 31 6207
[34] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P 2003 Comput. Mater. Sci. 27 151
[35] Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
[36] Wang Z F, Li Q, Shi Q W, Wang X, Yang J, Hou J G and Chen J 2008 Appl. Phys. Lett. 92 133114
[37] Zhao P, Liu D S, Li S J and Chen G 2012 Chem. Phys. Lett. 554 172
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 107302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 107302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 107302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 107302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 107302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 107302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 107302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 107302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 107302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 107302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 107302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 107302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 107302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 107302
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 107302
Viewed
Full text


Abstract