CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Equivalent Trap Energy Level Extraction for SiGe Using Gate-Induced-Drain-Leakage Current Analysis |
LIU Chang1, YU Wen-Jie1**, ZHANG Bo1, XUE Zhong-Ying1, WU Wang-Ran2, ZHAO Yi3, ZHAO Qing-Tai4 |
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 3Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 4Peter Grünberg Institute 9, Forschungszentrum Jülich and JARA Fundamentals of Future Intormation Technology, Jülich 52425, Germany
|
|
Cite this article: |
LIU Chang, YU Wen-Jie, ZHANG Bo et al 2014 Chin. Phys. Lett. 31 106103 |
|
|
Abstract The gate-induced-drain-leakage of MOSFETs is analyzed to better understand the sub-threshold swing degradation of SiGe tunnel field-effect transistors and their band-to-band tunneling mechanism. The numerical model of the analysis is elaborated. Equivalent trap energy levels are extracted for Si and strained SiGe. It is found that the equivalent trap energy level in SiGe is shallower than that in Si.
|
|
Published: 31 October 2014
|
|
PACS: |
61.72.uf
|
(Ge and Si)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
|
|
|
[1] Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D and Hansch W 2004 Solid-State Electron. 48 2281 [2] Knoch J, Mantl S and Appenzeller J 2007 Solid-State Electron. 51 572 [3] Boucart K and Ionescu A M 2007 IEEE Trans. Electron Devices 54 1725 [4] Choi W Y, Park B G, Lee J D and Liu T J K 2007 IEEE Electron Device Lett. 28 743 [5] Sandow C, Knoch J, Urban C, Zhao Q T and Mantl S 2009 Solid-State Electron. 53 1126 [6] Mayer F, Le Royer C, Damlencourt J F, Romanjek K, Andrieu F, Tabone C, Previtali B and Deleonibus S 2008 IEEE International Electron Devices (San Francisco, USA 15–17 December 2008) p 163 [7] Nayfeh O M, Hoyt J L and Antoniadis D A 2009 IEEE Trans. Electron Devices 56 2264 [8] Zhao Q T, Hartmann J M and Mantl S 2011 IEEE Electron Device Lett. 32 1480 [9] Schmidt M, Minamisawa R A, Richter S, Luptak R, Hartmann J M, Buca D, Zhao Q T and Mantl S 2012 Solid-State Electron. 71 42 [10] Chen J, Chan T Y, Chen J C, Ko P K and Hu C 1987 IEEE Electron Device Lett. 8 515 [11] Huang L, Lai P T, Xu J P and Cheng Y C 1998 Microelectron. Rel. 38 1425 [12] Chen J H, Wong S C and Wang Y H 2001 IEEE Trans. Electron Devices 48 1400 [13] Kane E O 1961 J. Appl. Phys. 32 83 [14] Sentaurus Device, Synopsys Version D-2010.03 [15] Choi J B, Seo S H, Lee J U, Kang G C, Kim S W, Roh K S, Kim K Y, Lee C H, Lee S Y, Kim H T, Kim D H, Min K S, Kim D J, Kang D W, Rhee J K and Kim D M 2006 J. Korean Phys. Soc. 49 1565 [16] Rosar M, Leroy B and Schweeger G 2000 IEEE Trans. Electron Devices 47 154 [17] Yu W, Zhang B, Zhao Q T, Buca D, Hartmann J M, Luptak R, Mussler G, Fox A, Bourdelle K K, Wang X and Mantl S 2012 IEEE Electron Device Lett. 33 758 [18] Rieger M M and Vogl P 1993 Phys. Rev. B 48 14276 [19] Kao K H, Verhulst A S, Vandenberghe W G, Soree B, Groeseneken G and De Meyer K 2012 IEEE Trans. Electron Devices 59 292 [20] Kao K H, Verhulst A S, Rooyackers R, Hikavyy A, Simoen E, Arstila K, Douhard B, Loo R, Simoen A, Tolle J, Dekkers H, Machkaoutsan V, Maes J, De Meyer K, Collaert N, Heyns M, Huyghebaert C and Thean A 2013 ECS Trans. 50 965 [21] Kane E O 1960 J. Phys. Chem. Solids 12 181 [22] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234 [23] People R 1986 IEEE J. Quantum Electron. 22 1696 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|